Renan Vargas de Sá

TOMOGRAFIA SÍSMICA DE TEMPOS DE PRIMEIRA CHEGADA PELO MÉTODO DO ESTADO ADJUNTO: LIMITAÇÕES E ESTABILIDADE SOB REGULARIZAÇÃO CONVOLUCIONAL.

Niterói 2016

TOMOGRAFIA SÍSMICA DE TEMPOS DE PRIMEIRA CHEGADA PELO MÉTODO DO ESTADO ADJUNTO: LIMITAÇÕES E ESTABILIDADE SOB REGULARIZAÇÃO CONVOLUCIONAL.

Dissertação apresentada ao Programa de pósgraduação em Dinâmica dos Oceanos e da Terra da Universidade Federal Fluminense, como requisito parcial para obtenção do título de Mestre em Ciências (M. Sc.), orientado pelo Prof. Dr. Marco Antônio Cetale Santos.

Universidade Federal Fluminense – UFF Laboratório de Geologia Marinha Programa de Pós-Graduação

Orientador: Prof. Dr. Marco Antônio Cetale Santos

Niterói 2016

Renan Vargas de Sá TOMOGRAFIA SÍSMICA DE TEMPOS DE PRIMEIRA CHEGADA PELO MÉ-TODO DO ESTADO ADJUNTO: LIMITAÇÕES E ESTABILIDADE SOB REGULARIZAÇÃO CONVOLUCIONAL./ Renan Vargas de Sá. – Niterói, 2016-

61 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Marco Antônio Cetale Santos

box[t]Dissertação (Mestrado) – Universidade Federal Fluminense – UFF Laboratório de Geologia Marinha Programa de Pós-Graduação, 2016.

1. Tomografia. 2. Estado adjunto. 2. Refração. I. Marco Antônio Cetale Santos. II. Universidade Federal Fluminense. III. LAGEMAR. IV. Título

Renan Vargas de Sá

TOMOGRAFIA SÍSMICA DE TEMPOS DE PRIMEIRA CHEGADA PELO MÉTODO DO ESTADO ADJUNTO: LIMITAÇÕES E ESTABILIDADE SOB REGULARIZAÇÃO CONVOLUCIONAL.

Dissertação apresentada ao Programa de pósgraduação em Dinâmica dos Oceanos e da Terra da Universidade Federal Fluminense, como requisito parcial para obtenção do título de Mestre em Ciências (M. Sc.), orientado pelo Prof. Dr. Marco Antônio Cetale Santos.

Trabalho aprovado. Niterói, 24 de novembro de 2016:

Prof. Dr. Marco Antônio Cetale Santos Orientador

Prof. Dr. Luiz Alberto Santos Convidado 1

Prof. Dr. Wagner Lupinacci Convidado 2

Dr. Djalma Manoel Soares Filho Convidado 3

> Niterói 2016

Resumo

O cálculo do gradiente da função objetivo sempre foi a etapa mais custosa da tomografia sísmica de refração. Com a finalidade de reduzir este custo, o método do estado adjunto vem sendo estudado como uma alternativa aos métodos tradicionais de cálculo do gradiente, como o traçado de raios. Este método trata o cálculo do gradiente da função objetivo como uma otimização não linear, tornando o custo da obtenção do gradiente equivalente ao de mais uma solução do problema direto. Este método, porém, apresenta uma dificuldade quando se trata de regularização, uma vez que não é obtida a matriz de sensibilidade. Neste estudo realizou-se testes com técnicas de regularização convolucionais a fim de verificar a eficácia do método sob estes regularizadores. Foram realizadas tomografias de refração a partir de dados obtidos por meio de modelos sintéticos e os resultados foram analisados a fim de confirmar a estabilidade oferecida por estas técnicas de regularização.

Palavras-chave: tomografia. estado adjunto. refração.

Abstract

The computation of the misfit function gradient has always been the most expensive step on first arrival travel time tomography. As a way to make this step cheaper the adjoint-state method has been applied to seismic tomography as an alternative to more traditional methods for gradient computation, like ray tracing. This method treats the gradient computation as a non-linear optimization, reducing the cost of obtaining the gradient to be just as expensive as another forward problem solution. The setback of the method is the lack of a sensitivity matrix which make it harder to apply traditional regularization methods, such as Tikhonov regularization, for that reason this study aims for applying and verifying the efficiency and stability provided by convolutional regularization methods. Tomography tests were made on synthetic data, with and without noise, aiming to confirm the stability provided by these regularization techniques.

Keywords: tomography. adjoint-state. refraction.

Lista de ilustrações

Figura 1 - (a) tempos de chegada das ondas sísmicas aos receptores. (b) modelo geológico com duas camadas de velocidades V_1 e V_2 , fonte sísmica posicionada em O e receptores posicionados entre os pontos $B \in R''; X$ representa a distância entre a fonte e qualquer ponto na superfície,X'representa a distância mínima da fonte para que um receptor registre um evento de refração na superfície. X_c é a distância necessária para que a onda refratada seja o primeiro evento registrado num receptor e $_{c}$ é o ângulo crítico de refração. Figura adaptada de Almeida (2013). 25As direções de varredura para o FSM para uma malha em duas di-Figura 2 – mensões. a) Varredura com incremento positivo em $x \in z$, iniciando do canto superior esquerdo da malha, b) Varredura com incremento positivo em x e negativo em z, iniciando do canto inferior esquerdo da malha, c) Varredura com incremento negativo em $x \in z$, iniciando do canto inferior direito da malha e d) Varredura com incremento negativo 31em x e positivo em z, iniciando do canto superior direito. Figura 3 - Esquema local de cálculo de tempos de trânsito onde **P** é o ponto onde se deseja obter o valor do tempo de chegada, os pontos TL, T, TR, R, DR, D, DL e L pontos onde o tempo de chegada é conhecido, h é o espaçamento entre cada ponto e S_i é o valor da vagarosidade na célula $i = (\mathbf{TL}, \mathbf{TR}, \mathbf{DR}, \mathbf{DL})$, onde vagarosidade é o inverso da velocidade de propagação da onda. 32O modelo utilizado para obtenção dos dados para o teste de cober-Figura 4 – tura completa. (a) Mostra as posiçãoes de todas as fontes(asteriscos vermelhos) ao redor do modelo e (b) Mostra a disposição dos receptores(triângulos verdes) em relação a cada linha/coluna de fontes. . . . 38Figura 5 – (a)Resultado da inversão do teste de cobertura total após 27 iterações realizado para dados sem ruído e sem regularização. (b)Resultado da inversão do teste de cobertura total após 27 iterações realizado para dados com ruído e sem regularização. É possível identificar as duas anomalias em ambos os resultados, porém em (b) o modelo apresenta granulação devido à presença de ruído no dado. 38Resultados finais com filtro gaussiano. Em (a), dados sem ruído, e (b), Figura 6 – dados com ruído, utilizou-se uma janela de 30×30 células na primeira etapa, enquanto em (c), dados sem ruído, e (d), dados com ruído, foram utilizadas janelas de 15×15 células na primeira etapa. 39

Figura 7 –	Resultados finais com filtro de média móvel. Em (a), dados com ruído, e (b), dados sem ruído, utilizou-se uma janela de 30×30 células na primeira etapa, enquanto em (c), dados sem ruído, e (d), dados com ruído, foram utilizadas janelas de 15 × 15 células na primeira etapa	40
Figura 8 –	Modelos utilizados para obtenção dos dados.(a) m_1 e (b) m_2	41
Figura 9 –	Modelos iniciais utilizados para a inversão dos dados obtidos à partir dos modelo m_1 e m_2 .(a) $m0_1$, (b) $m0_2$	41
Figura 10 –	Disposição das fontes (asteriscos vermelhos) sobre o modelo m_1 , a mesma distribuição é utilizada no modelo m_2 .	42
Figura 11 –	Resultados da inversão para os dados obtidos a partir do modelo m_1 , utilizando-se o modelo inicial $m0_1$. (a)Modelo obtido a partir dos dados sem ruído e (b)Modelo obtido a partir dos dados com ruído	43
Figura 12 –	Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 162×80 para o primeiro estágio e 16×16 no segundo para os dados do modelo m_1 para dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$.	44
Figura 13 –	Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 162×80 para o primeiro estágio e 16×16 no segundo para os dados do modelo m_1 para dados com ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$.	44
Figura 14 –	Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 162×80 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_1 . Dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$. Dados com ruído: (c)utilizado modelo inicial $m0_1$ e (d)usando o modelo inicial $m0_2$.	45
Figura 15 –	Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 81×40 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_1 . Dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$. Dados com ruído: (c)utilizado modelo inicial $m0_1$ e (d)usando o modelo inicial $m0_2$.	46
Figura 16 –	Resultados da inversão utilizando o filtro de média móvel e tamanho de janela 162×80 para o primeiro estágio e 16×16 no segundo para os dados do modelo m_1 . Dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$. Dados com ruído: (c)utilizado modelo inicial $m0_1$ e (d)usando o modelo inicial $m0_2$	47
		11

Figura 17 –	Resultados da inversão utilizando o filtro de média móvel e tamanho de janela 162×80 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_1 . Dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$. Dados com ruído: (c)utilizado	
Figura 18 –	modelo inicial $m0_1$ e (d)usando o modelo inicial $m0_2$ Resultados da inversão utilizando o filtro de média móvel e tamanho de janela 81×40 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_1 . Dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$. Dados com ruído: (c)utilizado modelo inicial $m0_2$ e (d)usando o modelo inicial $m0_2$	48
Figura 19 –	Modelo iniciais (a) $m0_3$ e (b) $m0_4$ usados na inversão dos dados obtidos à partir do modelo m_2 .	50
Figura 20 –	Resultados da inversão dos dados obtidos com o modelo m_2 , usando o modelo inicial $m0_3$, sem regularização: (a)sem ruído e (b)com ruído	51
Figura 21 –	Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 162×80 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_2 . Dados sem ruído: (a)utilizado modelo inicial $m0_3$ e (b)usando o modelo inicial $m0_4$. Dados com ruído: (c)utilizado modelo inicial $m0_3$ e (d)usando o modelo inicial $m0_4$	53
Figura 22 –	Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 81×40 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_2 . Dados sem ruído: (a)utilizado modelo inicial $m0_3$ e (b)usando o modelo inicial $m0_4$. Dados com ruído: (c)utilizado modelo	
Figura 23 –	inicial $m0_3$ e (d)usando o modelo inicial $m0_4$	54 55
Figura 24 –	Resultados da inversão utilizando o filtro de média móvel e tamanho de janela 81×40 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_2 . Dados sem ruído: (a)utilizado modelo inicial $m0_3$ e (b)usando o modelo inicial $m0_4$. Dados com ruído: (c)utilizado modelo	00
	inicial $m0_3$ e (d)usando o modelo inicial $m0_4$	56

Sumário

	Introdução	15
1	TEORIA DA INVERSÃO	17
1.1	O problema inverso	17
1.2	Problema inverso mal posto	17
1.2.1	Existência	17
1.2.2	Unicidade	18
1.2.3	Estabilidade	18
1.3	Solução de problemas inversos	18
1.3.1	Inversão Linear	19
1.3.2	Inversão não linear	19
2	MÉTODO DO ESTADO ADJUNTO E TOMOGRAFIA SÍSMICA DE REFRAÇÃO	21
2.1	O método do estado adjunto a partir da teoria da perturbação	21
2.2	Formulação lagrangiana das equações de estado adjunto	23
2.3	Refração sísmica	24
2.3.1	Refrações em um sismograma	26
2.4	Tomografia sísmica de tempos de primeira chegada	26
2.4.1	Formulação da tomografia de primeira chegada pelo método do estado adjunto	27
2.5	Regularização	29
3	METODOLOGIA	31
3.1	Cálculo dos tempos de trânsito	32
3.1.1	Algoritmo	33
3.2	Cálculo da variável de estado adjunto	34
3.2.1	Algoritmo	35
4	TESTES COM DADOS SINTÉTICOS	37
4.1	Teste com cobertura completa	37
4.1.1	Resultados sem regularização	38
4.1.2	Resultados com regularização	39
4.2	Testes com tomografia de refração	40
4.2.1	Tomografia de refração do modelo m_1 - modelo com dois canais \ldots \ldots	42
4.2.1.1	Resultados sem regularização	42
4.2.1.2	Resultados com regularização	42

4.2.2	Tomografia de refração no modelo m_2 - Marmousi \ldots \ldots \ldots \ldots	50
4.2.2.1	Resultados sem regularização	50
4.2.2.2	Resultados com regularização	51
5	CONCLUSÃO	57
	REFERÊNCIAS	59

Introdução

Os tempos de chegada ondas sísmicas são utilziados para imagear o interior da Terra em diferentes escalas, desde a escala global por meio da sismologia de fontes passívas(AKI; LEE, 1976; SENGUPTA; TOKSöZ, 1976; DZIEWONSKI; HAGER; O'CONNELL, 1977) até a escala local por meio de levantamentos sísmicos(STEWART, 1992). Geralmente utiliza-se a tomografia sísmica de tempos de trânsito para se obter um bom modelo de velocidade que mkelhor descreva os dados observados. A tomografia sísmica de refração, ou de primeira chegada, consiste de utilizar os tempos de chegadas das ondas diretas, difratadas e refratas para se obter este modelo próximo à superfície(ZELT; AZARIA; LEVANDER, 2006).

Tradicionalmente a tomogradia sísmica de refração é utilizada amplamente para a obtenção de modelos de velocidade das estruturas mais próximas a superfície utilizados para realização de correções estáticas no processamento de dados de sísmica de reflexão(TAILLANDIER et al., 2009). Recentemente este tipo de tomografia também vem sendo utilizado para obtenção modelos iniciais rasos para migração em profundidade pre-stack e até mesmo para inversão de forma de onda para dados de altos ângulos(DESSA et al., 2004; BRENDERS; PRATT, 2007).

Geralmente a tomografia de tempos de trânsito é feita de forma iterativa, consistindo basicamente em calcular os tempos de trânsito em um modelo inicial e atualizar este modelo de acordo com a discrepância entre os dados observados e os tempos de trânsito obtidos(HUANG; BELLEFLEUR, 2012). Para que o algoritmo seja bem sucedido é necessário um método preciso e eficiente para o calculo dos tempos de trânsito e dentre os diversos métodos utilizados para este fim, o mais utilizado para a solução do problema direto na tomografia de primeira chegada é a solução por diferenças finitas de primeira odem da equação eikonal, como proposto inicialmente por Vidale (1988) sendo posteriormente melhorado por outros autores como Podvin e Lecomte (1991), Hole e Zelt (1995), Sethian e Popovici (1999) e Zhao (2004) devido a alta velocidade e precisão no calculo dos tempos de trânsito mesmo na presença de fortes contrastes de velocidade. Muitas técnicas de tomografia de refração realizam o traçado a posteriori a partir dos tempos de trânsito calculado perla solução eikonal para obter as derivadas de Frechet necessárias para o cálculo do gradiente da função objetivo, utilizando diversos algoritmos para solucionar o sistema tomografico linearizado (ZELT; BARTON, 1998; DESSA et al., 2004) de forma iterativa.

Uma vez que atualmente em uma aquisição sísmica são utilizados milhares de fontes juntamente com milhares de receptores, resultando em milhões de traços o que faz com que o calculo das derivadas de Frechét seja extremamente custoso computacionalmente, as vezes de forma proibitiva, tornando a linearização do problema algo inviável do ponto de computacional. Existem formas de contornar este problema, porém todas elas resultariam em perda de informação ou em uma má resolução como reduzir a quantidade de dados a serem invertidos ou utilizar um menor número de parâmetros a serem invertidos(TAILLANDIER et al., 2009).

O método do estado adjunto, utilizado neste trabalho para o cálculo dos gradientes, transforma a inversão tomografica em um problema de otimização não linear, tornando desnecessário o traçado de raios e o cálculo das derivadas de Frechét. A maior vantagem deste método pe que seu custo é equivalente a duas vezes a solução do problema direto, independente do tamanho dos dados de entrada(TAILLANDIER et al., 2009; LEUNG; QIAN, 2006). O método foi originalmente desenvolvido para aplicações em teoria de controle e depois aplicado à inversão por Chavent (1974) para a realização do calculo do gradiente da função objetivo de forma mais eficiente, Plessix (2006) apresenta uma revisão detalhada do método apresentando algumas de suas aplicações geofísicas.

Na geofísica o método do estado adjunto tem aplicações na migração sísmica e inversao de forma de onda (TARANTOLA, 1984), construção de modelos de velocidade (SEI; SYMES, 1994; CHAVENT; JACEWITZ, 1995; PLESSIX; MULDER; KROODE, 2000; MULDER; KROODE, 2002) vindo a ser aplicado pela primeira vez para a tomografia de primeira chegada por Leung e Qian (2006) e posteriormente aplicada por Taillandier et al. (2009) e Huang e Bellefleur (2012).

Uma vez que o método do estado adjunto não produz a matriz de sensibilidade(PLESSIX, 2006), torna-se difícil a aplicação de métodos tradicionaisde regularização. Taillandier et al. (2009) propõe a aplicação de um filtro gaussiano ao gradiente da função a cada iteração, porém uma maior análise da estabilidade do método se faz necessária e seguindo a ideia de utilizarem-se filtros espaciais como métodos de regularização, analizar o resulado da inversão sob diferentes filtros.

Este trabalho se propoe a observar a estabilidade da inversão pelo método do estado adjunto aplicado à dados ruidosos assim como estudar os efeitos de tecnicas convolucionais de regularização, aplicando filtros gaussiano e de média móvel com diferentes tamanhos de janela a fim de analizar o quão estável é a inversão utilizando o método do estado adjunto sob estes regularizadores.

Inicialmente será apresentada a função objetivo e a partir dela derivado o gradiente pelo método do estado adjunto, em seguida serão appresentados os algorítmos par a solução da equação eikonal e para o cálculo da variável de estado adjunto utilizando o método de varredura rápida modificados do método prospoto por Zhao (2004) e por fim o será testada a estabilidade do método a fim de validar as técnicas de regularização convolucionais aplicadas.

1 Teoria da inversão

Em qualquer área de estudo onde se aplica a análise de dados será aplicada a teoria de inversão, uma vez que nesses casos geralmente se tem como objetivo inferir informações sobre o objeto de estudo a partir dos dados obtidos por meio de medições físicas indiretas Aster, Borchers e Turber (2005). Este tipo de problema é chamado problema inverso.

Existem diversas teorias formuladas para a solução de problemas inversos, as mais tradicionais incluem técnicas de regressão linear como o método dos mínimos quadrados e também métodos iterativos para a solução de problemas não-lineares como o método do gradiente descendente, que será utilizado neste trabalho.

1.1 O problema inverso

É possível determinar a relação entre os dados, d, com o modelo, m, através da matriz G. Essa relação é expressa matematicamente da forma:

$$d = Gm. \tag{1.1}$$

Quando $G \in m$ são conhecidos esta relação é chamada problema direto, e é utilizada para obter os valores de d. Define-se como problema inverso o caso onde d é conhecido, sabe-se qual matriz G rege o fenômeno em questão e deseja-se obter os parâmetros do modelo m. Sendo assim, para a solução de problemas inversos, define-se o operador inverso G^{-1} .

1.2 Problema inverso mal posto

Geralmente os problemas inversos em geofísica são problemas mal postos. O conceito de problemas bem-postos e mal postos foi remete ao início do século XX por Hadamard Hansen (1998). Hadamard define problemas mal posts como sendo um problema cuja solução não obedeça um dos seguintes critérios: existência, unicidade e estabilidade. Um problema bem-posto é um problema onde estes três critérios são observados.

1.2.1 Existência

É possível que não exista um modelo que seja capaz de explicar os dados observados, isso pode ser causado por uma má aproximação da lei física que os relaciona aos parâmetros que se deseja estimar, sendo assim a matriz G não contém todas as informações necessárias para relacionar m e d. Outro fator que pode afetar a existência de uma solução é a presença de erros e ruídos nos dados obtidos Aster, Borchers e Turber (2005).

1.2.2 Unicidade

Mesmo quando a solução para o problema inverso existe, esta pode não ser a única solução que explique os dados. Ou seja, é possível que existam outras soluções além da solução verdadeira que satisfaça a equação 1.1.

A não unicidade de problemas inversos se dá devido ao espaço nulo da matriz GAster, Borchers e Turber (2005). Para problemas inversos lineares existe modelos, m_0 , que se encontram no espaço nulo de G e representam a solução para:

$$Gm_0 = 0.$$
 (1.2)

Se considerado um modelo, m_v , que solucione a equação 1.1. Segundo a definição de espaço nulo, por sobreposição, qualquer combinação linear entre $m_v \in m_0$ também será uma solução para o problema inverso. Sendo assim, caso a matriz G possua um espaço nulo não-vazio, a solução do problema inverso não será única.

1.2.3 Estabilidade

O cálculo da solução de problemas inversos pode ser extremamente instável no sentido de que uma pequena variação nos dados pode resultar em uma grande mudança no modelo final estimado. Uma solução é dita estável quando isto não acontece, ou seja, quando uma pequena mudança nos dados resulta em pequenas mudanças no modelo estimado. Matematicamente falando, uma solução é instável quando o operador inverso G^{-1} não for contínuo para todo o conjunto de dados Hansen (1998).

1.3 Solução de problemas inversos

Quando se tenta solucionar um problema inverso, busca-se obter uma solução aproximada, m_v , que minimize o resíduo da função objetivo Aster, Borchers e Turber (2005):

$$\|d^{obs} - d\| < \varepsilon, \tag{1.3}$$

onde d^{obs} é o dado observado e d é o dado calculado à partir do resultado da inversão e pode ser descrito como:

$$d = Gm_v. \tag{1.4}$$

A equação 1.3 representa a norma do resíduo entre o dado observado e os dados obtidos com o modelo que soluciona o problema inverso e ε é o limite de tolerância para o valor deste resíduo.

Este trabalho utilizará a norma L_2 , que é a norma mais comumente utilizada para problemas de inversão, esta norma assume que os dados observados estão distribuídos de forma gaussiana. Outros tipos de norma podem ser utilizados dependendo do tipo de problema a ser resolvido Almeida (2013). Tendo-se obtido a formulação geral para os problemas inversos, é possível então explicar os procedimentos práticos de sua solução. Existem dois tipos de métodos para solução de problemas inversos e estes diferem de acordo com o tipo de problema apresentado, sendo este linear ou não linear. Assume-se então a relação apresentada na equação 1.1 como sendo:

$$d = G(m). \tag{1.5}$$

Neste caso G é a função que relaciona o conjunto de dados, d, e o modelo, m.

1.3.1 Inversão Linear

Quando a função G é linear, isto é:

$$G(am_1 + bm_2) = aG(m_1) + bG(m_2).$$
(1.6)

Pode-se dizer que o problema inverso é um problema linear, sendo assim G(m) = Gm(ASTER; BORCHERS; TURBER, 2005). Sendo assim o problema inverso consistiria apenas da determinação do operador inverso $G^{(-1)}$. Porém na maioria dos casos isso não é possível por uma das seguintes razões: G não é uma matriz quadrada, a matriz G não apresenta posto completo (o número de equações é maior que o número de incógnitas) ou G apresenta determinante com valor muito próximo de zero. Uma forma de solucionar pelo menos um dos problemas para a inversão linear é utilizando-se o método dos mínimos quadrados. Este método foi formulado com o objetivo de obter um modelo que minimize a norma L_2 da função objetivo (ASTER; BORCHERS; TURBER, 2005). Sua formulação é dada por:

$$m_v = (G^T G)^{(-1)} G^T d^{obs}.$$
(1.7)

1.3.2 Inversão não linear

Quando a função G é uma função não linear, o problema inverso é um problema não linear. A forma mais simples de se resolver este tipo de problema é tentando torna-lo linear. Para isto é necessário expandir a equação 1.5 em uma série de Taylor até o termo de primeira ordem, em torno de um modelo inicial, m_0 (ALMEIDA, 2013):

$$G(m) = G(m_0) + \frac{tialG(m)}{tialm}\Big|_{m=m_0} (m - m_0).$$
(1.8)

Da expressão 1.8:

$$\Delta m = m - m_0, \tag{1.9}$$

$$\frac{tialG(m)}{ialm}\Big|_{m-m_0} = G_k,\tag{1.10}$$

A equação 1.9 representa a derivada de Frechét, sendo a derivada primeira de d em relação aos parâmetros do modelo. Aplicando-se as equações 1.9 e 1.10 em 1.5, pode-se escrever:

$$G_k \Delta m_{(k+1)} = d^{obs} - G(m) = \Delta d. \tag{1.11}$$

Pode-se então calcular o valor do gradiente $\Delta m_{(k+1)}$, sendo assim:

$$m_{(k+1)} = m_0 + \Delta m_{(k+1)}. \tag{1.12}$$

Sendo assim, a resolução do problema não linear se dá de forma iterativa, podendo ser descrita como:

- 1. Entrada: dados observados (d^{obs}) , modelo inicial (m_0) . k = 0.
- 2. É realizado o cálculo da derivada de Frechét para o modelo m_k e do dado estimado d_k , para o modelo m_k .
- 3. Verifica-se se o resíduo entre o dado calculado e observado é menor que o valor definido como resíduo tolerado para a expressão: $d^{obs} d$. Caso o resíduo obtido seja menor que o valor definido como tolerado, m_k é considerada solução para o problema e as iterações são interrompidas, caso contrário continua-se para o passo 4.
- 4. Soluciona-se a equação 1.11 para se obter o valor de $\Delta m_{(k+1)}$. Calcula-se então o novo modelo por: $m_{(k+1)} = m_k \Delta m_{(k+1)}$.
- 5. Retorna ao passo (2).

O resolução apresentada acima descreve a solução de problemas não lineares por meio do método do gradiente descendente, que será o método utilizado neste trabalho para resolução de problemas inversos, porém para este trabalho o gradiente $\Delta m_{(k+1)}$ será obtido por meio do método do estado adjunto, descrito no capítulo 2, eliminando a necessidade do cálculo da derivada de Frechét.

2 Método do estado adjunto e tomografia sísmica de refração

Desenvolvido originalmente para aplicações em teoria de controle e introduzido à teoria de inversão por Chavent (1974) para calcular o gradiente de uma função de forma eficiente, o método do estado adjunto é um método generalizado que depende de um conjunto de variáveis de estado que solucionam as equações diretas. As variáveis de estado adjunto são a solução para um sistema linear adjunto e representam uma medida global da perturbação do problema em relação às variáveis de estado Plessix (2006).

Numericamente este método é atraente uma vez que o custo do cálculo do gradiente em relação aos parâmetros do modelo passa a ser equivalente ao custo de apenas um ou duas soluções do problema direto. Este custo geralmente independe do número de parâmetros a serem invertidos.

Este capítulo irá formular o método do estado adjunto para calcular o gradiente da função objetivo J(m), na qual J depende de u(m). J é então definida em função de h,

$$J(m) = h(u(m), m).$$
 (2.1)

A variável de estado u representa a solução das equações de estado definidas pela equação de estado F:

$$F(u(m), m) = 0,$$
 (2.2)

onde m é o parâmetro do modelo e pertence ao espaço real de parâmetros do modelo **M**. u pertence ao espaço de variáveis de estado **U**, que pode ser real ou complexo, e é considerada uma realização física se F(u,m) = 0. F é um mapeamento de **U** × **M** para **U**. para diferenciar a realização física de qualquer elemento de **U**, os elementos deste conjunto serão denotados por \tilde{u} .

Em seguida será feita uma breve introdução à refração sísmica e será formulada a tomografia sísmica de primeira chegada a partir do método do estado adjunto.

2.1 O método do estado adjunto a partir da teoria da perturbação

Considerando que uma perturbação δm aplicada ao parâmetro do modelo m causará uma perturbação δu à realização física u e consequentemente uma perturbação δJ à função objetivo J. Assume-se que $u + \delta u$ deverá ser a realização física para $m + \delta m$. Logo, para a primeira ordem:

$$0 = F(u + \delta u, m + \delta m) = F(u, m) + \frac{tialF(u, m)}{tial\tilde{u}}\delta u + \frac{tialF(u, m)}{tialm}\delta m.$$
 (2.3)

Como F(u, m) = 0, a equação 2.3 se torna:

$$\frac{tialF(u,m)}{tial\tilde{u}}\delta u = -\frac{tialF(u,m)}{tialm}\delta m.$$
(2.4)

Sendo assim, o desenvolvimento de primeira ordem de J resulta em:

$$\delta J = \left\langle \frac{tialh(u,m)}{tial\tilde{u}}, \delta u \right\rangle_U + \frac{tialh(u,m)}{tialm} \delta m, \tag{2.5}$$

onde \langle , \rangle_U representa o produto escalar no espaço **U**.

Considerando que para cada parâmetro m existe uma única solução u, é possível afirmar que $u + \delta u$ é a única solução possível para $F(u + \delta u, m + \delta m) = 0$. Sendo assim, pela equação 2.4, δu pode definido como:

$$\delta u = -\left(\frac{tialF(u,m)}{tial\tilde{u}}\right)^{-1} \frac{tialF(u,m)}{tialm} \delta m.$$
(2.6)

Aplicando-se a equação 2.6 em 2.5 obtém-se:

$$\delta J = \frac{tialh(u,m)}{tialm} \delta m - \left\langle \frac{tialh(u,m)}{tial\tilde{u}}, \left(\frac{tialF(u,m)}{tial\tilde{u}}\right)^{-1} \frac{tialF(u,m)}{tialm} \delta m \right\rangle_{U},$$
(2.7)

$$\delta J = \frac{tialh(u,m)}{tialm} \delta m - \left\langle \left[\left(\frac{tialF(u,m)}{tial\tilde{u}} \right)^{-1} \right]^* \frac{tialh(u,m)}{tial\tilde{u}}, \frac{tialF(u,m)}{tialm} \delta m \right\rangle_U, \quad (2.8)$$

onde * representa a matriz adjunta.

Agrupando então os termos da equação 2.8 que não dependem da perturbação do parâmetro δm , com objetivo de evitar a necessidade de calcular as derivadas de Fréchet, é possível definir a variável de estado adjunto, λ , como:

$$\left(\frac{tialF(u,m)}{tial\tilde{u}}\right)^* \lambda = \frac{tialh(u,m)}{tial\tilde{u}}.$$
(2.9)

Logo é possível reescrever a perturbação δJ como:

$$\delta J = \left(-\left\langle\lambda, \frac{tialF(u,m)}{tialm}\right\rangle_U + \frac{tialh(u,m)}{tialm}\right)\delta m.$$
(2.10)

 λ pertence ao espaço dual de U.

A partir disso é possível afirmar que a variável de estado adjunto contém informações sobre as perturbações das variáveis de estado, vistas como variáveis independentes Plessix (2006). O cálculo de $\frac{tialJ}{tialm}$ utilizando as equações 2.9 e 2.10 é chamado método do estado adjunto. Uma vez que a obtenção do gradiente da função objetivo utilizando o método do estado adjunto independe de δm , logo é independente também do número de parâmetros do modelo, é necessário resolver a equação 2.10 apenas uma vez. As equações de estado adjunto podem ser formuladas utilizando uma função lagrangiana, está formulação é apresentada na sessão a seguir.

2.2 Formulação lagrangiana das equações de estado adjunto

Uma vez definia a variável de estado adjunto é possível formular o método do estado adjunto por meio e uma função aumentada, L. Está função é definida como:

$$L(\tilde{u}, \tilde{\lambda}, m) = h(\tilde{u}, m) - \langle \tilde{\lambda}, F(\tilde{u}, m) \rangle_U, \qquad (2.11)$$

onde $\tilde{\lambda}$ é qualquer elemento do espaço dual de **U**, sendo assim é independente de m.

Uma vez que u é uma realização física, F(u,m)=0 e para qualquer $\tilde{\lambda}$ pode-se escrever que:

$$L(u, \tilde{\lambda}, m) = h(u, m) = J(m), \qquad (2.12)$$

Considerando que $\tilde{\lambda}$ é independente de m:

$$\frac{tialL(u,\tilde{\lambda},m)}{tial\tilde{u}}\frac{tialu}{tialm} + \frac{tialL(u,\tilde{\lambda},m)}{tialm} = \frac{tialJ}{tialm}.$$
(2.13)

É possível, então, encontrar um valor λ de que satisfaça a equação:

$$\frac{tialL(u,\lambda,m)}{tial\tilde{u}} = \frac{tialh(u,m)}{tial\tilde{u}} - \left(\frac{tialF(u,m)}{tial\tilde{u}}\right)^* \lambda = 0.$$
(2.14)

Pode então ser feito um paralelo entre a equação 2.14 e a equação de estado adjunto 2.9. Sendo assim, é possível reescrever a equação 2.10 em função da função aumentada:

$$\frac{tialJ}{tialm} = \frac{tialL(u,\lambda,m)}{tialm} = \frac{tialh(u,m)}{tialm} - \left\langle \lambda, \frac{tialF(u,m)}{tialm} \right\rangle_U.$$
(2.15)

A função L pode ser definida como a lagrangiana de um problema de minimização onde se deseja encontrar o u que minimiza a função $h(\tilde{u}, m)$. Para que isso aconteça o ponto (u, λ) deve ser um ponto de sela da função L Ciarlet (1989). No ponto de sela, as derivadas de L se igualam à zero, porém as derivadas de L em função de $\tilde{u} \in \tilde{\lambda}$ são:

$$\frac{\frac{tialL(\tilde{u},\tilde{\lambda},m)}{tial\tilde{\lambda}} = -F(\tilde{u},m)}{\frac{tialL(\tilde{u},\tilde{\lambda},m)}{tial\tilde{u}} = \frac{tialh(\tilde{u},m)}{tial\tilde{u}} - \left(\frac{tialF(\tilde{u},m)}{tial\tilde{u}}\right)^* \tilde{\lambda}$$
(2.16)

Sendo assim, igualando-se a primeira equação do sistema 2.16 a zero, obtém-se a equação de estado, e igualando-se a segunda equação do sistema, obtém-se a equação de estado adjunto.

O Cálculo do gradiente utilizando estados adjuntos, uma vez encontrada a variável de estado, u, que satisfaz F(u, m) = 0, pode ser então resumido aos seguintes passos:

1. Define-se a função aumentada, L, de variáveis independentes \tilde{u} , $\tilde{\lambda}$ e m como sendo a equação 2.11. Caso $F(\tilde{u}, m)$ seja composta por N equações, $\tilde{\lambda}$ passará a ser um vetor com N elementos, uma vez que para cada equação de F será associada um estado adjunto. Sendo assim a equação 2.11 será reescrita como:

$$L(\tilde{u}, \tilde{\lambda}, m) = h(\tilde{u}, m) - \sum_{i=1}^{N} \langle \tilde{\lambda}_i, F_i(\tilde{u}, m) \rangle_U.$$
(2.17)

2. São então definidas as equações de estado adjunto por $\frac{tialL(u,\lambda,m)}{tial\tilde{u}} = 0$. Isso resulta na equação 2.9 para casos onde F é composta por uma única equação. Para casos onde F é composta por N equações, a equação de estado adjunto se torna:

$$\frac{tialh(u,m)}{tial\tilde{u}} - \sum_{i=1}^{N} \left(\frac{tialF_i(u,m)}{tial\tilde{u}}\right)^* \lambda_i = 0.$$
(2.18)

A solução destas equações será o valor de λ .

3. É calculado então o gradiente da função objetivo J. Para casos onde F apresenta apenas uma equação utiliza-se a equação 2.15. Quando F for composta por N equações será utilizada a equação:

$$\frac{tialJ}{tialm} = \frac{tialh(u,m)}{tialm} - \sum_{i=1}^{N} \left\langle \lambda_i, \frac{tialF_i(u,m)}{tialm} \right\rangle.$$
(2.19)

O resultado destas equações será o gradiente da função objetivo J.

2.3 Refração sísmica

A refração é o fenômeno pelo qual uma frente de onda sofre mudança em sua direção de propagação quando esta passa pela interface que separa dois meios com velocidades diferentes. Este fenômeno é regido pela lei de Snell. Por questão de simplificação da nomenclatura, toda vez que houver referência a ondas sísmicas, devem ser consideradas apenas ondas sísmicas compressionais, ou ondas P, igualmente neste trabalho ondas criticamente refratadas serão referidas apenas como ondas refratadas. Considerando uma frente de onda se propagando pelo modelo de duas camadas plano-paralelas apresentado na Figura 1, onde $V_2 > V_1$, esta onda ira sofrer refração total, ou seja, formar um ângulo de 90° com a normal à interface, quando incidir sobre ela com ângulo crítico θ_c , neste caso a onda irá se propagar ao longo da interface entre as duas camadas (KEARY et al., 2009). A onda irá se propagar então com velocidade constante igual a V_2 , uma vez que a interface não apresenta descontinuidades e as camadas não apresentam movimento relativo entre si. Feita esta observação e utilizando-se do princípio de Huygens pode ser determinada a forma como as ondas refratadas viajam até a superfície.

Figura 1: (a) tempos de chegada das ondas sísmicas aos receptores. (b) modelo geológico com duas camadas de velocidades $V_1 \in V_2$, fonte sísmica posicionada em O e receptores posicionados entre os pontos $B \in R''$; X representa a distância entre a fonte e qualquer ponto na superfície,X' representa a distância mínima da fonte para que um receptor registre um evento de refração na superfície. X_c é a distância necessária para que a onda refratada seja o primeiro evento registrado num receptor e $_c$ é o ângulo crítico de refração. Figura adaptada de Almeida (2013).

Observando a figura 1, nota-se a existência de duas posições importantes na superfície quando se tratando de ondas refratadas. A primeira delas é a distância mínima, X', para que seja possível observar a onda refratada na superfície, essa observação não é possível antes desta distância (TELFORD; GELDART; SHERIFF, 1990):

$$X' = 2htan(\theta_c) = 2htan\{arcsin\left(\frac{V_1}{V_2}\right)\} = 2\left\{\left(\frac{V_1}{V_2}\right)^2 - 1\right\}^{-\frac{1}{2}}.$$
 (2.20)

Outra distância importante observada é a posição onde a onda refratada passa a ser o primeiro evento registrado pelo receptor, X_c , dada pela equação:

$$X_c = 2h \left(\frac{(V_2 + V_1)}{(V_2 - V_1)}\right)^{\frac{1}{2}}.$$
(2.21)

É necessário levar em consideração estas distâncias para entender a resposta de uma refração em um sismograma, assim como para se ter uma ideia da geologia presente na área quando se está criando um modelo inicial para a tomografia.

2.3.1 Refrações em um sismograma

Considerando um modelo geológico constituído de duas camadas plano-paralelas homogêneas e isotrópicas em seus interiores, cujas velocidades de propagação de ondas sísmicas são representadas por V_1 e V_2 respectivamente e $V_2 > V_1$. Posiciona-se uma fonte sísmica na posição O e receptores dispostos ao longo da mesma superfície horizontal como demonstrado na 1, é possível então observar nesta figura as trajetórias das diversas frentes de onda, neste caso representadas como raios para simplificar a visualização, desde a fonte até sua chegada aos receptores na superfície. Na 1 é possível notar três tipos de eventos diferentes sendo registrados pelos receptores. O primeiro deles sendo a onda direta, que se propaga pela superfície com velocidade V_1 aparece no gráfico como uma reta, expressa por:

$$t = \frac{X}{V_1}.\tag{2.22}$$

O segundo evento registrado é a chegada de ondas refletidas, cujos tempos de trânsito se comportam no gráfico como uma hipérbole, seu tempo de percurso entre a fonte e os receptores e dado pela expressão:

$$t = \frac{\sqrt{X^2 + 4h^2}}{V_1}.$$
 (2.23)

O último evento registrado é a reta que representa a chegada das ondas refratas, sendo este o evento de interesse deste estudo, e a expressão para o cálculo do seu tempo de trânsito pode ser obtida a partir da trajetória da onda refratada observada na 1, somando-se os tempos de trânsito para o trajeto entre a fonte e a interface, (OM), caminho entre o ponto onde a onda atinge a interface e o ponto onde ela retorna a superfície, (MP'), e o trajeto entre a interface e o receptor, (P'R')(TELFORD; GELDART; SHERIFF, 1990):

$$t = \frac{h}{V_1 cos\theta_c} + \frac{X - 2htan\theta_c}{V_2} + \frac{h}{V_1 cos\theta_c},$$
(2.24)

ou

$$t = \frac{X}{V_2} + \frac{2h\cos\theta_c}{V_1}.$$
(2.25)

Como, segundo a lei de Snell, $\cos\theta_c = V_1/V_2$, as expressões 2.24 e 2.25 podem ser simplificadas como:

$$t = \frac{X}{V_2} + \frac{2h\sqrt{V_2 - V_1}}{V_1 V_2}.$$
(2.26)

2.4 Tomografia sísmica de tempos de primeira chegada

A tomografia sísmica é um caso de problema inverso cujo objetivo é inferir informações sobre a subsuperfície a partir de dados sísmicos, a fim de gerar um modelo que descreva a geologia no local da aquisição. No caso da tomografia de refração, ou tomografia de primeira chegada, deseja-se obter os valores de velocidade das camadas mais próximas da superfície e assim gerar um modelo de velocidades para baixas profundidades. Estes modelos são utilizados para diversas finalidades, dentre elas realização de correção estática, servir de modelo para a migração pré-empilhamento em profundidade e para a inversão de forma de onda completa para altos ângulos (DESSA et al., 2004; BRENDERS; PRATT, 2007)

2.4.1 Formulação da tomografia de primeira chegada pelo método do estado adjunto

 Sendo

$$J(m) = \frac{1}{2} \int_{tial\Omega} dr |T(m,r) - T_{obs}(r)|^2, \qquad (2.27)$$

a função objetivo, dado um modelo de velocidades m, para um único tiro. Onde r são os receptores posicionados na superfície $tial\Omega \in \Omega$ sendo a subsuperfície. Pode-se definir a função objetivo como sendo a norma L_2 da diferença dos tempos de chegada observados nos dados, T_{obs} , e os tempos de trânsito, T, calculados a partir da solução da equação iconal em um modelo m de velocidades.

A equação iconal é definida como uma aproximação de alta frequência para a equação completa elástica da onda, considerando um meio acústico, isotrópico e heterogêneo (CHAPMAN, 2004). Sendo ela:

$$|\nabla T(x)|^2 = \frac{1}{m(x)^2}, \qquad x \in \Omega,$$
(2.28)

cuja condição de contorno é

$$T(x_s) = 0,$$
 (2.29)

onde x_s é a posição da fonte, T(x) é o tempo de trânsito entre a fonte e a posição x e m(x) é a velocidade de propagação da onda.

Deseja-se então minimizar o valor da função objetivo a fim de obter um modelo de velocidades que resulte em tempos de trânsito o mais próximo possível dos tempos observados nos dados obtidos. Utilizando o método do gradiente descendente a minimização se torna um problema não linear, iterativo definido por:

$$m_{k+1} = m_k - \alpha_k \nabla J(m_k), \qquad (2.30)$$

onde ∇J é o gradiente da função objetivo, sendo o seu negativo o vetor que aponta na direção que irá reduzir a função objetivo, e α é um escalar que define o comprimento do passo a ser dado. Tradicionalmente este gradiente é obtido a partir da solução de um sistema linear envolvendo a matriz das derivadas de Frechét G. O método do estado adjunto, entretanto, é capaz de calcular o gradiente da função objetivo sem necessidade do cálculo das derivadas de Frechét (PLESSIX, 2006; TAILLANDIER et al., 2009).

A tomografia sísmica tem como variável de estado os tempos de trânsito T e a a equação iconal é a função que relaciona a variável de estado aos parâmetros a serem invertidos. É

definida então uma perturbação δm no modelo de velocidade que irá causar uma alteração proporcional ao tempo de chegada, δT . Sendo assim pode-se definir uma perturbação, δJ , na função objetivo como sendo:

$$\delta J = \int_{tial\Omega} dr (T - T_{obs}) \delta T, \qquad (2.31)$$

Derivando-se a equação 2.28 é possível obter a relação entre a perturbação no modelo m e a perturbação no tempo de trânsito T. Em duas dimensões esta relação fica:

$$T_x \delta T_x + T_z \delta T_z = -\frac{\delta m}{m^3},\tag{2.32}$$

onde $T_x \in T_z$ são as derivadas parcias de T nas direções $x \in z$, respectivamente.

Multiplicando a equação 2.32 pela variável de estado adjunto λ , integrando em Ω e somando à equação 2.31, obtem-se a função objetivo estendida

$$\delta J = \int_{tial\Omega} dx (T - T_{obs}) \delta T + \int_{\Omega} dx \lambda (T_x \delta T_x + T_z \delta T_z + \frac{\delta m}{m^3}).$$
(2.33)

Integrando o segundo termo da equação 2.33 obtemos:

$$\delta J = \int_{tial\Omega} dx (T - T_{obs}) \delta T + \int_{tial\Omega} dx (\mathbf{n} \cdot \nabla T) \lambda \delta T + \int_{\Omega} dx \nabla \cdot (-\lambda \nabla T) + \int_{\Omega} dx \cdot \lambda \frac{\delta m}{m^3}.$$
(2.34)

onde \mathbf{n} é o vetor unitário normal à superfície onde se encontram os receptores.

A fim de se eliminar a necessidade de ter tialT conhecido procura-se o valor de λ que solucione as equações:

$$\nabla \cdot (-\lambda \nabla T) = 0, \qquad (2.35)$$

para a subsuperfície e:

$$(\mathbf{n} \cdot \nabla T)\lambda = T_{obs} - T, \qquad (2.36)$$

na posição dos receptores.

Sendo assim, é possível determinar o gradiente da função objetivo, para um tiro, a partir de

$$\delta J = \int_{\Omega} dx \cdot \lambda \frac{\delta m}{m^3}.$$
 (2.37)

A fim de garantir que ao atualizar o modelo estaremos minimizando a função objetivo, define-se a perturbação de velocidade $\delta m = -\frac{\lambda}{m^3}$ como sendo o vetor que aponta na direção que minimiza a função objetivo (HUANG; BELLEFLEUR, 2012). Assim é possível reescrever a equação 2.30 como

$$m_{k+1} = m_k + \alpha_k \delta m, \tag{2.38}$$

Resolvendo-se a equação 2.38 iterativamente, tende-se então a minimizar a função objetivo e a obter o modelo ótimo que se ajuste aos dados.

2.5 Regularização

A regularização é essencial para que seja possível obter uma solução para problemas que sem sua utilização seriam mal postos. Seu objetivo é fazer com que uma função instável passe a ser estável por meio de restrições que direcionam a solução (ASTER; BORCHERS; TURBER, 2005). Originalmente a regularização foi proposta por Tikhonov de forma a ser possível solucionar problemas mal postos, sendo assim, uma das técnicas mais tradicionais de regularização é a de Tikhonov. Existem diversas outras técnicas de regularização, dentre elas as técnicas convolucionais, ou filtros, que serão utilizadas neste trabalho. Regularizadores convolucionais são aplicados diretamente sobre o gradiente da função objetivo, visando suavizar o efeito de ruídos e erros de medida, sendo assim, geralmente são utilizados filtros passa baixa, ou seja, no domínio do espaço apresentam um kernel, ou matriz de pesos, grande. A forma geral da convolução no domínio espacial se dá por:

$$\sum_{m=-M}^{M} k(i) * f(x+1).$$
(2.39)

Neste trabalho serão testados dois tipos de filtro espacial passa baixa, o filtro de média móvel e o filtro gaussiano, os filtros serão testados com kernels de diferentes tamanhos.

i

3 Metodologia

Este capítulo destina-se a descrever como foram realizados os cálculos para a solução da equação iconal, utilizada para obtenção dos dados sintéticos e para a solução do problema direto durante as etapas de inversão, e o cálculo da variável de estado adjunto (λ) , utilizada posteriormente para o cálculo do grandiente da função objetivo. Serão descritos nas seguintes sessões as furmulações para o cálculo destes valores localmente para cada elemento do grid.

Para a realização da varredura dos elementos da malha foi utilizada uma variação do método de varredura rápida(*Fast sweeping method*, **FSM**) proposto por Zhao (2004), que consiste em realizar varreduras do grid em ordem, nas direções positvas e negativas de x e positiva e negativa de z, alternadamente, como demonstrado na Figura 2 atualizando os valores para cada ponto da malha utilizando os esquemas locais. São realizadas iterações até que não existam mais variações nos valores em cada célula entre uma atualização e outra.

Figura 2: As direções de varredura para o FSM para uma malha em duas dimensões. a) Varredura com incremento positivo em x e z, iniciando do canto superior esquerdo da malha, b) Varredura com incremento positivo em x e negativo em z, iniciando do canto inferior esquerdo da malha, c) Varredura com incremento negativo em x e z, iniciando do canto inferior direito da malha e d) Varredura com incremento negativo em x e positivo em z, iniciando do canto superior direito.

A inversão destes dados foi realizada utilizando o método do gradiente descendente, como apresentado na equação 2.30, usando uma aproximação quadrática para definição do passo α a cada iteração e definindo o gradiente como sendo $tialm = -\frac{\lambda}{m^3}$, tendo dois critérios de parada, sendo estes:

- 1. $J(m) \leq \varepsilon$, assumindo ε como sendo um valor muito baixo, determinando assim que a solução obtida se encontra próxima do mínimo da função;
- 2. $J_k J_{k-1} \leq \xi$, este critério determina que houve convergência entre os resultados

das iterações da inversão, sendo ξ um valor baixo, pode-se afirmar que a variação entre as soluções é desprezível.

A regularização da inversão dos dados se deu por meio da aplicação de filtros espaciais sobre o gradiente da função objetivo obtido a cada iteração. Foram utilizados dois filtros para este estudo, sendo estes o de média móvel e o gaussiano.

3.1 Cálculo dos tempos de trânsito

Para o cálculo local dos tempos de trânsito foi utilizado o método proposto por (PODVIN; LECOMTE, 1991), utilizando-se uma aproximação por diferenças finitas para a solução da equação iconal. Tendo sido um aprimoramento do método proposto por (VIDALE, 1988), o método aqui utilizado tem como principais vantagens ser capaz de calcular os tempos de trânsito mesmo em modelos com grandes contrastes de velocidade e considerar a chegada de ondas refratadas.

Esta abordagem se baseia no princípio de Huygens, sendo conhecidos os tempos de chegada nos pontos \mathbf{TL} e \mathbf{L} . Na Figura 3 é possível então prever três diferentes tempos de chegada ao ponto \mathbf{P} , uma onda plana que se propaga entre \mathbf{L} e \mathbf{TL} , uma onda direta vinda do ponto \mathbf{L} e uma onda difratada a partir do ponto \mathbf{TL} , define-se então como tempo de primeira chegada o menor valor dentre os três obtidos.

Figura 3: Esquema local de cálculo de tempos de trânsito onde **P** é o ponto onde se deseja obter o valor do tempo de chegada, os pontos **TL**, **T**, **TR**, **R**, **DR**, **D**, **DL** e **L** pontos onde o tempo de chegada é conhecido, **h** é o espaçamento entre cada ponto e S_i é o valor da vagarosidade na célula i = (TL, TR, DR, DL), onde vagarosidade é o inverso da velocidade de propagação da onda.

3.1.1 Algoritmo

Apresentamos aqui o algoritmo para a aplicação do método de varredura rápida para o cálculo dos tempos de trânsito. Inicialmente define-se as equações:

$$t_{\mathbf{LP}} = t_{\mathbf{L}} + h \min(S_{\mathbf{TL}}, S_{\mathbf{DL}})$$
(3.1)

$$t_{\mathbf{LTLP}} = t_{\mathbf{L}} + \sqrt{(h S_{\mathbf{TL}})^2 - (t_{\mathbf{L}} - t_{\mathbf{TL}})^2}$$
(3.2)

$$t_{\mathbf{TLP}} = t_{\mathbf{TL}} + h \, S_{\mathbf{TL}} \sqrt{2} \tag{3.3}$$

como sendo os tempos de chegada no ponto \mathbf{P} resultantes respectivamente da onda direta vinda do ponto $\mathbf{L}(3.1)$, da onda plana que passa entre os pontos \mathbf{L} e $\mathbf{TL}(3.2)$ e da onda refratada no ponto $\mathbf{TL}(3.3)$.

Definidas as equações o algoritmo segue como sendo:

- 1. Inicializa-se o tempo de trânsito na posição da fonte como sendo $t(z_s, x_s) = 0$ e atribui-se um valor alto para todos os outros pontos da malha;
- 2. Realiza-se a varredura da direção $x = 1 : x_m ax$ e $z = 1 : z_m ax$, calculando-se os valores de $t_{\mathbf{LP}}$, $t_{\mathbf{LTLP}}$ e $t_{\mathbf{TLP}}$ para $\mathbf{P} = (z, x)$ e mantem-se o menor valor como $t_{aux}(z, x)$;
- 3. Se $t_{aux}(z,x) < t_k(z,x)$, então $t_{k+1}(z,x) = t_{aux}(z,x)$, caso contrário $t_{k+1}(z,x) = t_k(z,x)$;
- 4. Realiza-se a varredura da direção $x = x_m ax : 1 e z = 1 : z_m ax$, calculando-se os valores de $t_{\mathbf{LP}}$, $t_{\mathbf{LTLP}}$ e $t_{\mathbf{TLP}}$ para $\mathbf{P} = (z, x)$ e mantem-se o menor valor como $t_{aux}(z, x)$;
- 5. Se $t_{aux}(z,x) < t_k(z,x)$, então $t_{k+1}(z,x) = t_{aux}(z,x)$, caso contrário $t_{k+1}(z,x) = t_k(z,x)$;
- 6. Realiza-se a varredura da direção $x = x_m ax : 1$ e $z = z_m ax : 1$, calculando-se os valores de t_{LP} , t_{LTLP} e t_{TLP} para $\mathbf{P} = (z, x)$ e mantem-se o menor valor como $t_{aux}(z, x)$;
- 7. Se $t_{aux}(z,x) < t_k(z,x)$, então $t_{k+1}(z,x) = t_{aux}(z,x)$, caso contrário $t_{k+1}(z,x) = t_k(z,x)$;
- 8. Realiza-se a varredura da direção $x = 1 : x_m ax$ e $z = z_m ax : 1$, calculando-se os valores de $t_{\mathbf{LP}}$, $t_{\mathbf{LTLP}}$ e $t_{\mathbf{TLP}}$ para $\mathbf{P} = (z, x)$ e mantem-se o menor valor como $t_{aux}(z, x)$;
- 9. Se $t_{aux}(z,x) < t_k(z,x)$, então $t_{k+1}(z,x) = t_{aux}(z,x)$, caso contrário $t_{k+1}(z,x) = t_k(z,x)$;

10. Caso $T_k \neq T_{k+1}$ volte para o passo 2, caso contrário mantem-se T_{k+1} como a malha de tempos de trânsito.

Este algoritmo é muito eficiente para modelo mais simples. Os resultados convergem em pouquíssimas iterações, muitas vezes sendo necessária apenas uma iteração para se obter convergência. Mesmo para modelo complexos ele requer um número baixo de iterações para alcançar a convergência.

3.2 Cálculo da variável de estado adjunto

Para o cálculo local das variáveis de estado adjunto foi utilizado o esquema de (LEUNG; QIAN, 2006) para solucionar as equações 2.35 e 2.36. A equação 2.35 pode ser escrita, em 2D, da seguinte forma

$$\frac{tiala\lambda}{tialx} + \frac{tialb\lambda}{tialz} = 0 \tag{3.4}$$

onde $a = \frac{tialt(z,x)}{tialx}$ e $b = \frac{tialt(z,x)}{tialz}$ representam as componentes horizontal e vertical do gradiente de t respectivamente. Sendo $\lambda_{i,j}$ a variável de estado adjunto na posição (z_i, x_j) da subsuperfície, cujas células possuem dimensões Δx por Δz . Nas direções horizontal e vertial os valores de a e b são determinados nas posições intermediárias $(z_{i\pm\frac{1}{2}}, x_j)$ e $(x_i, z_{j\pm\frac{1}{2}})$, definindo assim:

$$a_{i,j-\frac{1}{2}} = \frac{t_{i,j} - t_{i,j-1}}{\Delta x}, \qquad a_{i,j+\frac{1}{2}} = \frac{t_{i,j+1} - t_{i,j}}{\Delta x}$$
 (3.5)

е

$$b_{i-\frac{1}{2},j} = \frac{t_{i,j} - t_{i-1,j}}{\Delta z}, \qquad b_{i+\frac{1}{2},j} = \frac{t_{i+1,j} - t_{i,j}}{\Delta z}$$
(3.6)

podemos reescrever 3.4 como:

$$\frac{1}{\Delta x}(a_{i,j+\frac{1}{2}}\lambda_{i,j+\frac{1}{2}} - a_{i,j-\frac{1}{2}}\lambda_{i,j-\frac{1}{2}}) + \frac{1}{\Delta z}(b_{i+\frac{1}{2},j}\lambda_{i+\frac{1}{2},j} - b_{i-\frac{1}{2},j}\lambda_{i-\frac{1}{2},j}) = 0.$$
(3.7)

Uma vez que os valores de λ nas interfáces $(\lambda_{i,j\pm\frac{1}{2}} \in \lambda_{i\pm\frac{1}{2}})$ estão diretamente relacionados com a direção de propagação da onda, temos que $a_{i,j+\frac{1}{2}} > 0$ indica que a onda se propaga da esquerda para a direita, sendo assim podemos usar $\lambda_{i,j+\frac{1}{2}} = \lambda_{i,j}$, caso contrário define-se $\lambda i, j + \frac{1}{2} = \lambda_{i,j+1}$ (LEUNG; QIAN, 2006). O mesmo é válido para $\lambda_{i\pm\frac{1}{2},j}$.

Define-se então a notação:

$$a_{i,j+\frac{1}{2}}^{\pm} = \frac{a_{i,j+\frac{1}{2}} \pm |a_{i,j+\frac{1}{2}}|}{2}, \qquad a_{i,j-\frac{1}{2}}^{\pm} = \frac{a_{i,j-\frac{1}{2}} \pm |a_{i,j-\frac{1}{2}}|}{2}$$
(3.8)

$$b_{i+\frac{1}{2},j}^{\pm} = \frac{b_{i+\frac{1}{2},j} \pm |b_{i+\frac{1}{2},j}|}{2}, \qquad b_{i-\frac{1}{2},j}^{\pm} = \frac{b_{i-\frac{1}{2},j} \pm |a_{i-\frac{1}{2},j}|}{2}$$
(3.9)

Se definirmos $a_{i,j\pm\frac{1}{2}} = a^+_{i,j\pm\frac{1}{2}} + a^-_{i,j\pm\frac{1}{2}}$ e $b_{i\pm\frac{1}{2},j} = b^+_{i\pm\frac{1}{2},j} + a^-_{i\pm\frac{1}{2},j}$, podemos reescrever 3.7 como:

$$\frac{1}{\Delta x} [(a_{i,j+\frac{1}{2}}^+ \lambda_{i,j+\frac{1}{2}} \lambda_{i,j+1}) - (a_{i,j-\frac{1}{2}}^+ \lambda_{i,j-1} + a_{i,j-\frac{1}{2}}^- \lambda_{i,j})] + \frac{1}{\Delta z} [(b_{i+\frac{1}{2},j}^+ \lambda_{i,j} + b_{i+\frac{1}{2},j}^- \lambda_{i+1,j}) - (b_{i-\frac{1}{2},j}^+ \lambda_{i-1,j} + a_{i-\frac{1}{2},j}^- \lambda_{i,j})] + \frac{1}{\Delta z} [(b_{i+\frac{1}{2},j}^+ \lambda_{i,j} + b_{i+\frac{1}{2},j}^- \lambda_{i+1,j}) - (b_{i-\frac{1}{2},j}^+ \lambda_{i-1,j} + a_{i-\frac{1}{2},j}^- \lambda_{i,j})] + \frac{1}{\Delta z} [(b_{i+\frac{1}{2},j}^+ \lambda_{i,j} + b_{i+\frac{1}{2},j}^- \lambda_{i+1,j}) - (b_{i-\frac{1}{2},j}^+ \lambda_{i-1,j} + a_{i-\frac{1}{2},j}^- \lambda_{i,j})] + \frac{1}{\Delta z} [(b_{i+\frac{1}{2},j}^+ \lambda_{i,j} + b_{i+\frac{1}{2},j}^- \lambda_{i+1,j}) - (b_{i-\frac{1}{2},j}^+ \lambda_{i-1,j} + a_{i-\frac{1}{2},j}^- \lambda_{i,j})] + \frac{1}{\Delta z} [(b_{i+\frac{1}{2},j}^+ \lambda_{i,j} + b_{i+\frac{1}{2},j}^- \lambda_{i+1,j}) - (b_{i-\frac{1}{2},j}^+ \lambda_{i-1,j} + a_{i-\frac{1}{2},j}^- \lambda_{i,j})] + \frac{1}{\Delta z} [(b_{i+\frac{1}{2},j}^+ \lambda_{i,j} + b_{i+\frac{1}{2},j}^- \lambda_{i+1,j}) - (b_{i-\frac{1}{2},j}^+ \lambda_{i+1,j} + b_{i-\frac{1}{2},j}^- \lambda_{i+1,j})] + \frac{1}{\Delta z} [(b_{i+\frac{1}{2},j}^+ \lambda_{i+1,j} + b_{i+\frac{1}{2},j}^- \lambda_{i+1,j}) - (b_{i+\frac{1}{2},j}^+ \lambda_{i+1,j} + b_{i+\frac{1}{2},j}^- \lambda_{i+1,j})] + \frac{1}{\Delta z} [(b_{i+\frac{1}{2},j}^+ \lambda_{i+1,j} + b_{i+\frac{1}{2},j}^- \lambda_{i+1,j}^- \lambda_{i+\frac{1}{2},j}^- \lambda_{i+\frac{1}{2},j}^-} \lambda_{i+\frac{1}{2},j}^- \lambda_{$$

isolando-se $\lambda_{i,j}$, temos

$$\lambda_{i,j} = \frac{\frac{a_{i,j-\frac{1}{2}}^{+}\lambda_{i,j-1}-a_{i,j+\frac{1}{2}}^{-}\lambda_{i,j+1}}{\Delta x} + \frac{b_{i-\frac{1}{2},j}^{+}\lambda_{i-1,j}-b_{i+\frac{1}{2},j}^{-}\lambda_{i+1,j}}{\Delta z}}{\frac{a_{i,j+\frac{1}{2}}^{+}-a_{i,j-\frac{1}{2}}^{-}}{\Delta x} + \frac{b_{i+\frac{1}{2},j}^{+}-b_{i-\frac{1}{2},j}^{-}}{\Delta z}}{\Delta z}}$$
(3.11)

A equação 3.11 é então utilizada para se realizar o cálculo da variável de estado adjunto λ por meio do método da varredura rápida.

3.2.1 Algoritmo

Define-se então o algoritmo para o cálculo de λ como:

- 1. Inicializa-se a variável de estado adjunto nas posições dos receptores utilizando a equação 2.36 e definindo valores altos para todas as outras células.
- 2. Realizam-se as varreduras ao longo do domínio da mesma forma que no algoritmo para cálculo dos tempos de trânsito, utilizando a equação 3.11 para atualizar os valores de λ_{k+1} nas células onde não se encontram os receptores.
- 3. Caso $\lambda_k \neq \lambda_{k+1}$ volte para o passo 2, caso contrário mantem-se λ_{k+1} como os valores da variável de estado adjunto.

4 Testes com dados sintéticos

Para analisar as limitações e estabilidade do método foram realizados testes utilizando dados sintéticos obtidos a partir de diferentes modelos. Foi realizado um teste de cobertura total, com fontes e receptores disposto ao redor de uma área de um modelo e dois testes de tomografia de refração propriamente dita.Para cada um dos modelos utilizados foram adquiridos dados livres de ruído e dados com ruído aleatório com desvio padrão igual a 2% do maior tempo de chegada registrado para cada tiro.

O único tipo de informação a priori utilizado em todos os testes foi que a velocidade nas posições dos receptores era conhecida, ou seja, em casos onde há receptores espalhados por toda a superfície a velocidade na superfície será conhecida.

Apenas dois critérios de parada foram adotados: $(1)J(m) \leq \varepsilon$ e $(2)J_k - J_{k-1} \leq \xi$, onde o primeiro determina que a inversão pare quando a função objetivo atingir um determinado valor, esperando-se que este seja um mínimo da função, e o segundo determina um critério de convergência onde, definindo-se um valor muito baixo para ξ , pode-se considerar que não há mais variação no valor da função objetivo.

Foi utilizado o método do gradiente descendente para a inversão e o tamanho do passo foi calculado por meio de uma aproximação de segundo grau. Nos casos onde foi aplicada a regularização a inversão foi realizada em duas etapas, a primeira utilizando uma janela grande, igual ao maior offset entre fonte e receptor e uma outra igual a metade desta distância horizontalmente enquanto verticalmente a janela tem metade do tamanho da janela horizontal, gerando assim um novo modelo inicial para uma inversão utilizando uma janela menor para os filtros, tendo sido testados dois tamanhos para esta janela menor, sendo estes $\frac{1}{10}$ e $\frac{1}{20}$ do tamanho da janela horizontal maior em ambas as direções.

4.1 Teste com cobertura completa

O modelo utilizado para o teste de cobertura completa consiste em um campo de velocidades homogêneo de dimensões $400.0m \times 400.0m$ com velocidade igual a 2000.0m/s e com duas anomalias de velocidade uma de dimensões de $50.0m \times 50.0m$ com velocidade de propagação 2500.0m/s e outra de dimensões $100m \times 100.0m$ e velocidade 2200.0m/s. O modelo foi discretizado em células de $10.0m \times 10.0m$ e as fontes e receptores foram dispostas de acordo com a Figura 4, sendo assim 124 tiros com 95 receptores cada totalizando em 11780 tempos de primeira chegada adquiridos.

O modelo inicial para a inversão utilizado foi um modelo homogêneo com velocidade igual à de fundo do modelo original.

Figura 4: O modelo utilizado para obtenção dos dados para o teste de cobertura completa.
(a) Mostra as posiçãoes de todas as fontes(asteriscos vermelhos) ao redor do modelo e (b) Mostra a disposição dos receptores(triângulos verdes) em relação a cada linha/coluna de fontes.

4.1.1 Resultados sem regularização

Na Figura 5 pode-se observar os resultados da inversão sem a aplicação de regularizadores, nota-se que o método é eficiente em imagear as anomalias com bastante precisão quando se tem uma boa cobertura da área a ser invertida, mesmo quando há presença de ruído nos dados mesmo que neste caso o resultado final aparentar um campo de velocidade mais heterogêneo dando uma aprência granulada ao modelo, apresentando as maiores variações quando próximo das posições das fontes e dos receptores.

Figura 5: (a)Resultado da inversão do teste de cobertura total após 27 iterações realizado para dados sem ruído e sem regularização. (b)Resultado da inversão do teste de cobertura total após 27 iterações realizado para dados com ruído e sem regularização. É possível identificar as duas anomalias em ambos os resultados, porém em (b) o modelo apresenta granulação devido à presença de ruído no dado.

4.1.2 Resultados com regularização

Para cada filtro aplicado, foram utilizados dois tamanhos de janela para a primeira etapa, 30×30 células e 15×15 células, enquanto que na segunda etapa manteve-se um tamanho de 3×3 células independente do filtro da primeira etapa.

Quando aplicado o filtro gaussiano no gradiente da função objetivo durante a inversão, os resultados finais são bem estáveis e suaves mesmo quando os dados apresentam ruído, aproximando-se dos resultados obtidos para os dados sem ruído, pode-se observar isso na Figura 6. É notável também que o número de iterações aumenta quando se aplica este tipo de regularização em dados sem ruído, sendo este aumento muito maior quando se utiliza a janela de 30×30 células na primeira etapa(Figura 6a), porém quando aplicados sobre dados ruidosos observa-se uma redução no número de iterações independente do tamanho da janela utilizada na primeira etapa, mesmo que seja um redução pequena.

Figura 6: Resultados finais com filtro gaussiano. Em (a), dados sem ruído, e (b), dados com ruído, utilizou-se uma janela de 30 × 30 células na primeira etapa, enquanto em (c),dados sem ruído, e (d), dados com ruído, foram utilizadas janelas de 15 × 15 células na primeira etapa.

Quando aplicado o filtro de média móvel os resultados finais apresentam maior suavização do modelo, tornando imperceptivel o efeito do dado ruidoso sobre a inversão, porém perde-se a definição das bordas das anomalias de velocidade no modelo como pode-se observar na Figura 7.

Figura 7: Resultados finais com filtro de média móvel. Em (a), dados com ruído, e (b), dados sem ruído, utilizou-se uma janela de 30 × 30 células na primeira etapa, enquanto em (c),dados sem ruído, e (d), dados com ruído, foram utilizadas janelas de 15 × 15 células na primeira etapa.

Assim como no caso da regularização pelo filtro gaussiano, é possível observar um pequeno aumento no número de iterações necessárias para a inversão dos dados sem ruído, pouco influenciado pelo tamanho da janela utilizada na primeira etapa. Quando aplicado na inversão do dado ruidoso é possível observar uma grande redução no número de iterações necessárias quando utilizada uma janela de tamanho 30×30 sobre o gradiente.

4.2 Testes com tomografia de refração

Para os testes de tomografia de refração foram utilizados dois modelos diferentes para a obtenção dos dados, o primeiro modelo utilizado consiste de um modelo de camadas plano paralelas com a presença de um canal próximo ao centro do modelo nas duas últimas camadas, este modelo é chamado neste trabalho de m_1 , o segundo modelo utilizadoconsiste em uma seção do modelo Marmousi, indo até a profundidade de 2016.0m, exibindo assim algumas das principais feições presentes no modelo, este modelo é tratado por m_2 neste trabalho. Estes modelos podem ser vistos na Figura 8a e 8b respectivamente.

Para a inversão dos modelos m_1 foram utilizados dois modelos iniciais, ambos gradientes de velocidade que aumentam com a profundidade, porém um deles apresenta velocidade

Figura 8: Modelos utilizados para obtenção dos dados. $(a)m_1 e (b)m_2$

mais próximas das velocidades do modelo original enquanto que o segundo apresenta velocidades mais altas que as do modelo original. Estes modelos podem ser vistos na Figura 9 e serão tratados daqui em diante por $m0_1$ e $m0_2$ respectivamente.

Figura 9: Modelos iniciais utilizados para a inversão dos dados obtidos à partir dos modelo $m_1 \in m_2.(a)m0_1$, $(b)m0_2$.

O modelo m_1 possui dimensões vertical e horizontal de 250.0*m* e 2500.0*m* respectivamente, discretizado em células de $10.0m \times 10.0m$ e apresentando uma coluna d'água de 50.0m. As fontes e receptores foram dispostas sobre a superfície da camada superior em ambos os casos, tendo sido realizados um total de 88 tiros, sendo 44 do lado esquerdo do modelo e outros 44 no lado direito do modelo como mostrado na figura 10, cada um com 150 receptores espaçados 10.0m entre eles, tendo 210.0m como menor offset entre fonte e

(a)

receptor.

Figura 10: Disposição das fontes(asteriscos vermelhos) sobre o modelo m_1 , a mesma distribuição é utilizada no modelo m_2 .

O modelo m_2 é uma parte do modelo Marmousi, tendo 9216.0*m* de extensão horizontal e 2016.0*m* de profundidade com células de 24.0*m* × 24.0*m*. A geometria de aquisição utilizada conta com 77 fontes distribuídas ao longo de toda a superfície do modelo, espaçadas 120.0*m* entre elas e 328 receptores também espalhados por toda a superfície porém com espaçamnento de 24.0*m* entre eles. Os modelos iniciais utilizados para a inversão serão apresentados mais adiante.

4.2.1 Tomografia de refração do modelo m_1 - modelo com dois canais

O modelo m_1 apresenta uma geologia simples de três camadas, porém as duas camadas inferiores do modelo aparesentam canais numa posição próxima ao centro modelo. O objetivo deste teste de inversão é observar a capacidade do método de enxergar variações de velocidade em pequenos intervalos no espaço.

4.2.1.1 Resultados sem regularização

Quando realizada a inversão sem nenhum tipo de regularização obteve-se bons resultados utilizando-se o modelo inicial $m0_1$ (Figura 11). Mesmo quando os dados apresentavam ruído foi possível recuperar um modelo que apresenta forte semelhança com o modelo original, apesar da presença de algumas distorções ao longo do modelo, principalmente próximo às posições dos receptores.

O modelo inicial $m0_2$ se mostrou como uma má escolha para a inversão sem regularizadores uma vez que não foi possível obter bons resultados. Ao inverter dados sem ruídos tendo este modelo como ponto de partida obteve-se um modelo final que não apresentava nenhuma das características do modelo original. Porém o problema maior foi observado quando se realizou a inversão dos dados contendo ruído, o que resultou em uma infinidade de iterações onde a inversão se mostrava incapaz de convergir.

4.2.1.2 Resultados com regularização

Para estes testes foram realizadas três testes para cada filtro. Cada teste consistiuo de duas inversões com modelos iniciais diferentes. Dois deles utilizando, na primeira etapa,

Figura 11: Resultados da inversão para os dados obtidos a partir do modelo m_1 , utilizandose o modelo inicial $m0_1$. (a)Modelo obtido a partir dos dados sem ruído e (b)Modelo obtido a partir dos dados com ruído

uma janela de tamanho 162×80 células; na segunda etapa, janelas de tamanhos 16×16 em um dos testes e 8×8 em outro, e um teste utilizando uma janela de 81×40 células para a primeira etapa e uma janela de 8×8 células na segunda.

Quando aplicado filtro gaussiano nota-se que os resultados sofrem maior influência das janelas aplicadas na segunda etapa da inversão. A janela utilizada na primeira etapa apenas irá alterar o número de iterações para se obter a solução quando se emprega a mesma janela para a segunda etapa. É perceptivel também que após a aplicação da regularização observa-se que os resultados obtidos a partir do modelo inicial $m0_2$ passam a se aproximar daqueler ao se utilizar o modelo inicial $m0_1$.

Quando se emprega a janela de 162×80 na primeira etapa da invesão e 16×16 na segunda a inversão gerou um modelo que apresenta distorções nas camadas. Neste caso é difícil identificar os canais presentes no modelo original quando utilizado em dados sem ruído(Figura 12a e 12b).

Quando aplicado sobre dados ruidosos o resultado apresenta menos distorções, tendo suas feições mais bem definidas e se aproximando do modelo original(Figura 13a e 13b).

Quando utilizada janela de 8×8 na segunda etapa, o resultado obtido foi satisfatório independente do tamanho da janela aplicada na primeira etapa e da presença de ruído nos dados. Observou-se uma boa definição dos limites entre as camadas e os canais ficaram bem definidos(Figuras 14 e 15).

O filtro de média móvel, se comparado ao filtro gaussiano, apresenta uma redução drástica no número de iterações necessárias para se obter um resultado assim como uma maior suavização do modelo final, apresentando menor definição nos limites entre as camadas. Como com o filtro gaussiando o tamanho da janela utilizada na primeira etapa altera somente o número de iterações necessárias para a obtenção dos resultados na segunda

Figura 12: Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 162×80 para o primeiro estágio e 16×16 no segundo para os dados do modelo m_1 para dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$.

Figura 13: Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 162×80 para o primeiro estágio e 16×16 no segundo para os dados do modelo m_1 para dados com ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$.

etapa. Este filtro apresenta, também, grande estabilidade nos resultados, uma vez que a presença de ruídos nos dados não causa muita variação nas soluções obtidas.

Quando utilizado com janela de 162×80 na primeira etapa e 16×16 na segunda, o modelo obtido se mostra muito suavizado, tornando difícil a identificação de qualquer feição, principalmente nos modelos obtidos a partir de $m0_2$ (Figura 16).

Quando se utiliza a janela de tamanho 8×8 na segunda etapa, independente do tamanho da janela utilizada na primeira, os canais presentes próximos ao centro do modelo

Figura 14: Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 162×80 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_1 . Dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$. Dados com ruído: (c)utilizado modelo inicial $m0_1$ e (d)usando o modelo inicial $m0_2$.

original se tornam mais fáceis de identificar, ainda que a suavização do modelo torne difícil definir as interfaces entre as duas camadas superiores, fazendo com que estas pareçam uma única camada(Figuras 17 e 18).

45

(a)

Figura 15: Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 81×40 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_1 . Dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$. Dados com ruído: (c)utilizado modelo inicial $m0_1$ e (d)usando o modelo inicial $m0_2$.

Figura 16: Resultados da inversão utilizando o filtro de média móvel e tamanho de janela 162×80 para o primeiro estágio e 16×16 no segundo para os dados do modelo m_1 . Dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$. Dados com ruído: (c)utilizado modelo inicial $m0_1$ e (d)usando o modelo inicial $m0_2$.

Figura 17: Resultados da inversão utilizando o filtro de média móvel e tamanho de janela 162×80 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_1 . Dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$. Dados com ruído: (c)utilizado modelo inicial $m0_1$ e (d)usando o modelo inicial $m0_2$.

Figura 18: Resultados da inversão utilizando o filtro de média móvel e tamanho de janela 81×40 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_1 . Dados sem ruído: (a)utilizado modelo inicial $m0_1$ e (b)usando o modelo inicial $m0_2$. Dados com ruído: (c)utilizado modelo inicial $m0_1$ e (d)usando o modelo inicial $m0_2$.

4.2.2 Tomografia de refração no modelo m_2 - Marmousi

Este modelo consiste de uma parte do modelo Marmousi, cobrindo toda a sua extensão horizontal, porém chegando apenas até a profundidade de 2016.0m uma vez que a presença de corpos de alta velocidade não permitiam a iluminação em maiores profundidades. Ao utilizar este modelo o objetivo era observar como o método se comporta em regiões com grandes variações de velocidade.

Os modelos iniciais utilizados para a inversão dos dados obtidos a partir de m_2 foram os modelo $m0_3$ e $m0_4$ que consistem de uma versão suavizada do modelo original, utilizando-se um filtro de média móvel com janela de 30×30 células e de um gradiente de velocidades que aumenta com a profundidade. Os dois modelos iniciais podem ser vistos na Figura 19

Figura 19: Modelo iniciais (a) $m0_3$ e (b) $m0_4$ usados na inversão dos dados obtidos à partir do modelo m_2 .

4.2.2.1 Resultados sem regularização

Quando realizada a inversão sem regularização só foram obtidos resultados utilizando-se o modelo $m0_3$, utilizando o modelo $m0_4$ a inversão não foi capaz de convergir para um mínimo.

Sendo assim é possível observar nos resultados, mesmo quando há presença de ruídos nos dados, a presença das estruturas de cavalgamento no centro do modelo, assim como algumas das camadas de maior velocidade presentes nessa região. Em maiores profundidades, porém,

torna-se difícil distinguir as estruturas e a presença das variações de velocidade como pode ser visto na Figura 20.

Figura 20: Resultados da inversão dos dados obtidos com o modelo m_2 , usando o modelo inicial $m0_3$, sem regularização: (a)sem ruído e (b)com ruído.

4.2.2.2 Resultados com regularização

Sobre as inversões realizadas a partir dos dados deste modelo foram aplicados ambos o regularizadores, porém, ao contrário dos casos anteriores a janela da segunda etapa foi mantida a mesma, 8×8 células, para todos os tamanhos de janela utilizados na primeira etapa, neste caso 162×80 células e 82×40 células, umas vez que foi observado nos casos anteriores que a janela de 16×16 retorna resultados muito inferiores aos obtidos com a janela menor.

Resultados obtidos utilizando-se o filtro gaussiano como regularizador apresentam boa definição das estruturas mais rasas, os resultados, porém, é possível observar algumas distorções nestas estruturas quando obtidos à partir de dados ruidosos(Figuras 21 e 22). O tamanho da janela utilizada na primeira etapa parece ter uma maior influência no resultado final, principalmente se observados as soluções obtidas com o modelo inicial $m0_4$, onde podem ser observados vestígios do gradiente de velocidades presentes no modelo original quando se utilizando a janela de tamanho 81×40 na primeira etapa(Figura 22b e 22d).

Os resultados obtido a partir da aplicação do filtro de média móvel como regularizador apresentaram maior estabilidade quando se compara os resultados obtidos a partir de dados com e sem ruídos. Existe porém uma diferença visível entre os resultados obtidos com diferentes janelas de filtragem, principalmente quando se utiliza o modelo inicial $m0_4$ que com a janela de 162×80 células apresenta uma aparência de camadas em maiores profundidades(figuras 23 a e b). Quanto à definição das estruturas e identificação das variações de velocidades o filtro apresenta bons resultados mesmo quando utiliza-se os dados ruidosos para a inversão(figuras 23 e 24).

Figura 21: Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 162×80 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_2 . Dados sem ruído: (a)utilizado modelo inicial $m0_3$ e (b)usando o modelo inicial $m0_4$. Dados com ruído: (c)utilizado modelo inicial $m0_3$ e (d)usando o modelo inicial $m0_4$.

Figura 22: Resultados da inversão utilizando o filtro gaussiano e tamanho de janela 81×40 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_2 . Dados sem ruído: (a)utilizado modelo inicial $m0_3$ e (b)usando o modelo inicial $m0_4$. Dados com ruído: (c)utilizado modelo inicial $m0_3$ e (d)usando o modelo inicial $m0_4$.

Figura 23: Resultados da inversão utilizando o filtro de média móvel e tamanho de janela 162×80 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_2 . Dados sem ruído: (a)utilizado modelo inicial $m0_3$ e (b)usando o modelo inicial $m0_4$. Dados com ruído: (c)utilizado modelo inicial $m0_3$ e (d)usando o modelo inicial $m0_4$.

Figura 24: Resultados da inversão utilizando o filtro de média móvel e tamanho de janela 81×40 para o primeiro estágio e 8×8 no segundo para os dados do modelo m_2 . Dados sem ruído: (a)utilizado modelo inicial $m0_3$ e (b)usando o modelo inicial $m0_4$. Dados com ruído: (c)utilizado modelo inicial $m0_3$ e (d)usando o modelo inicial $m0_4$.

5 Conclusão

Após a análise dos resultados obtidos foi possível constatar que o método é capaz de levar à bons resultados de inversão quando aplicadas as técnicas convolucionais de regularização. Deve-se atentar, porém, à escolha do modelo inicial utilizado para a inversão, sendo este possivelmente o fator mais importante para a definição do resultado final. Outro fator importante a se observar são os parâmetros de regularização, no caso os tamanhos horizontais e verticais da janela, foi possível observar que o tamanho da janela escolhida para a primeira etapa da inversão irá impactar o número de iterações necessárias para a obtenção do resultado final, porém o que irá definir a acurácia da inversão será principalmente o tamanho da janela aplicada na segunda etapada da mesma.

Referências

AKI, K.; LEE, W. H. K. Determination of three-dimensional velocity anomalies under a seismic array using first p arrival times from local earthquakes: 1. a homogeneous initial model. *Journal of Geophysical Research*, v. 81, n. 23, p. 4381–4399, Aug. 1976. Citado na página 15.

ALMEIDA, V. T. X. *Tomografia sísmica de superfície*: Modelagem direta calculando as trajetórias de ondas refratadas. Dissertação (Mestrado) — Universidade Federal Fluminense, Niterói, BR, out. 2013. Citado 3 vezes nas páginas 9, 19 e 25.

ASTER, R. C.; BORCHERS, B.; TURBER, C. H. *Parameter estimation and inverse problems.* 1. ed. Oxford, UK: Elsevier Academic Press, 2005. Citado 4 vezes nas páginas 17, 18, 19 e 29.

BRENDERS, A. J.; PRATT, R. G. Efficient waveform tomography for lithospheric imaging: Implications for realistic, two-dimensional acquisition geometries and low-frequency data. *Geophysical Journal International*, Oxford University Press (UOP), v. 168, n. 1, p. 152–170, Jan. 2007. Citado 2 vezes nas páginas 15 e 27.

CHAPMAN, C. H. *Fundamentals of seismic wave propagation*. 1. ed. Nova York, EUA: Cambirdge University Press, 2004. Citado na página 27.

CHAVENT, G. Identification of functional parameter in partial differential equations. In: _____. *Identification of parameters in distributed systems*. Austin, EUA: The American society of mechanical engineers (ASME), 1974. p. 31–48. Citado 2 vezes nas páginas 16 e 21.

CHAVENT, G.; JACEWITZ, C. A. Determination of background valocities by multiple migration fitting. *Geophysics*, Society of Exploration Geophysics, v. 60, n. 2, p. 476–490, Mar. 1995. Citado na página 16.

CIARLET, P. G. *Applied Geophysics*. 1. ed. Nova York, EUA: Introduction to Numerical Linear Algebra and Optimisation., 1989. Citado na página 23.

DESSA, J. X. et al. Deep seismic imaging of the eastern nankai trough, japan, from multifold ocean bottom seismometer data by combined travel time tomography and prestack depth migration. *Journal of Geophysical Research*, American Geophysical Union (AGU), v. 109, n. B2, p. 1–15, Fev. 2004. Citado 2 vezes nas páginas 15 e 27.

DZIEWONSKI, A. M.; HAGER, B. H.; O'CONNELL, R. J. Large-scale heterogeneities in the lower mantle. *Journal of Geophysical Research*, v. 82, n. 2, p. 239–255, Jan. 1977. Citado na página 15.

HANSEN, P. C. *Rank-deficient and discrete ill-posed problems*: numerical aspects of linear inversion. 1. ed. Filadélfia, EUA: Society for industrial and applied mathematics, 1998. Citado 2 vezes nas páginas 17 e 18.

HOLE, J. A.; ZELT, B. C. 3-d finite-difference reflection traveltimes. *Geophysics Journal International*, Oxford University Press (UOP), v. 121, n. 2, p. 427–434, May 1995. Citado na página 15.

HUANG, J. W.; BELLEFLEUR, G. Joint transmission and reflection traveltime tomography using the fast sweeping method and the adjoint-state technique. *Geophysical Journal International*, Oxford University Press (UOP), v. 188, n. 2, p. 570–582, Nov. 2012. Citado 3 vezes nas páginas 15, 16 e 28.

LEUNG, S.; QIAN, J. An adjoint state method for three dimensional transmission traveltime tomographt using first-arrivals. *Communications in mathematical sciences*, International Press, v. 4, n. 1, p. 249–266, Jan. 2006. Citado 2 vezes nas páginas 16 e 34.

MULDER, W. A.; KROODE, A. E. tem. Automatic velocity analysis by differential semblance optimization. *Geophysics*, Society of Exploration Geophysics, v. 67, n. 4, p. 1184–1191, Jul. 2002. Citado na página 16.

PLESSIX, R. E. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. *Geophysical Journal International*, Oxford University Press (UOP), v. 167, n. 2, p. 495–503, Nov. 2006. Citado 4 vezes nas páginas 16, 21, 22 e 27.

PLESSIX, R. E.; MULDER, W. A.; KROODE, A. tem. Automatic cross-well tomography by semblance and differential semblance optimization: theory and gradient computation. *Geophysical Prospecting*, v. 48, p. 913–935, 2000. Citado na página 16.

PODVIN, P.; LECOMTE, I. Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. *Geophysics Journal International*, Oxford University Press (UOP), v. 105, p. 603–627, May 1991. Citado 2 vezes nas páginas 15 e 32.

SEI, A.; SYMES, W. W. Inversion of seismic reflection data in the acoustic aproximation. 64th Annual International Meetings, Society of Exploration Geophysics, p. 1351–1354, 1994. Citado na página 16.

SENGUPTA, M. K.; TOKSöZ, M. N. Three dimensional model of seismic velocity variation in the earth's mantle. *Geophysical Research Letters*, v. 3, n. 2, p. 84–86, Feb. 1976. Citado na página 15.

SETHIAN, J. A.; POPOVICI, A. M. 3-d traveltime computation using the fast marching method. *Geophysics*, Society of Exploration Geophysics, v. 64, n. 2, p. 516–523, Mar. 1999. Citado na página 15.

STEWART, R. R. *Exploration seismic tomography: fundamentals.* 2. ed. Tulsa, EUA: Society of Exploration Geophysics, 1992. Citado na página 15.

TAILLANDIER, C. et al. First-arrival traveltime tomography based on the adjoint-state method. *Geophysics*, Society of Exploration Geophysics, v. 74, n. 6, p. WCB1–WCB10, Nov. 2009. Citado 3 vezes nas páginas 15, 16 e 27.

TARANTOLA, A. Inversion of seismic reflection data in the acoustic aproximation. *Geophysics*, Society of Exploration Geophysics, v. 49, n. 8, p. 1259–1266, Aug. 1984. Citado na página 16.

TELFORD, W. M.; GELDART, L. P.; SHERIFF, R. E. *Applied Geophysics.* 2. ed. Nova York, EUA: Cambirdge University Press, 1990. Citado 2 vezes nas páginas 25 e 26.

VIDALE, J. Finite-difference calculation of travel times. *Bulletin of the seismological society of America*, Seismological society of America, v. 74, n. 6, p. 2062–2076, Dec. 1988. Citado 2 vezes nas páginas 15 e 32.

ZELT, C. A.; AZARIA, A.; LEVANDER, A. 3d seismic refraction traveltime tomography at a groundwater contamination site. *Geophysics*, Society of Exploration Geophysics, v. 71, n. 5, p. H67–H78, Sep. 2006. Citado na página 15.

ZELT, C. A.; BARTON, P. J. Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the faeroe basin. *Journal of Geophysical Research: Solid Earth*, v. 103, n. B4, p. 7187–7210, Apr. 1998. Citado na página 15.

ZHAO, H. A fast sweeping method for eikonal equations. *Mathematics of computation*, American Mathematical Society (AMS), v. 74, n. 250, p. 271–284, May 2004. Citado 3 vezes nas páginas 15, 16 e 31.