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RESUMO

Investigar a presenca de hidratos de gas em subsuperficie € importante para a
prevencao de riscos ambientais, para exploracdo dessa fonte de energia menos poluente que o éleo
e 0 carvao e, até mesmo, como analogo no estudo de Marte. Dessa forma, o objetivo deste trabalho
foi interpretar a Base of Gas Hydrates Stability Zone (BGHSZ), em Umitaka Spur, uma provincia
conhecida pela presenca de hidratos de gas, da Bacia de Joetsu, Japdo. Para isso, foram utilizados
os dados sismicos 2D monocanal adquiridos em 2007 (NT07-20 Expedition) e 2008 (NT08-09
Expedition) e processados pela Japan Agency for Marine-Earth Science and Technology
(JAMSTEC). A metodologia consistiu na aplicacdo de seis atributos sismicos para realcar os
Bottom Simulating Reflectors (BSRs), através do software Petrel 2019, da Schlumberger. Esses
atributos foram Envelope, Amplitude RMS, Pseudo Relevo, Impedancia Acustica Relativa,
Decomposicdo Espectral e Frequéncia Instantdnea. Os dois atributos sismicos Envelope e
Amplitude RMS realcaram as altas energias de amplitude das se¢des sismicas. Assim, os atributos
geoldgicos Pseudo Relevo e Impedancia Acustica Relativa destacaram as descontinuidades e 0s
altos contrastes de impedancia do dado sismico. Enquanto decomposicdo espectral e frequéncia
instantanea serviram para destacar as atenuagdes sismicas, real¢cando dessa forma a zona de gas
livre abaixo do BSR. Dessa forma, essa metodologia foi fundamental para reduzir as ambiguidades
intrinsecas a geofisica, ao realcar os BSRs através da avaliacdo sismica de mais de uma
propriedade fisica (amplitude e frequéncia) e dos atributos geoldgicos que destacaram as falhas da
complexa geologia local.

Palavras-chave: Atributos Sismicos. Hidratos de Gas. BSR. Mar do Japao.



ABSTRACT

Investigating the presence of gas hydrates in the subsurface is important for the
prevention of geohazards, for the exploitation of this cleaner energy source than oil and coal, and
even as an analogue in the Mars study. Thus, the goal of this work was to interpret the Base of Gas
Hydrates Stability Zone (BGHSZ), in Umitaka Spur, a province known for the presence of gas
hydrates, in the Joetsu Basin, Japan. For this, 2D Single Channel Seismic (SCS) data acquired in
2007 (NTO7-20 Expedition) and 2008 (NT08-09 Expedition) and processed by the Japan Agency
for Marine-Earth Science and Technology (JAMSTEC) were used. The methodology consisted of
the application of six seismic attributes to highlight the Bottom Simulating Reflectors (BSRS),
using Schlumberger Petrel 2019 software. These attributes were Envelope, RMS Amplitude,
Amplitude Volume Technique (AVT), Relative Acoustic Impedance (RAI), Spectral
Decomposition and Instantaneous Frequency. The two seismic attributes Envelope and Amplitude
RMS highlighted the high amplitude energies of the seismic sections. Thus, the AVT and RAI
geological attributes highlighted the discontinuities and the high impedance contrasts of the
seismic data. As instantaneous frequency and spectral decomposition, they served to highlight the
seismic attenuations, thus enhancing the free gas zone below the BSR. Thus, this methodology
was fundamental to reduce ambiguities intrinsic to geophysics, by highlighting BSRs through the
seismic assessment of more than one physical property (amplitude and frequency) and the

geological attributes that highlighted the faults of this complex geological framework.

Keywords: Seismic Attributes. Gas Hydrates. BSR. Japan Sea.
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Chapter 1 INTRODUCTION

The research of gas hydrates is relevant for paleo environments studies and preventing
geological hazards, such as slides and slumps caused by their dissociation and for understanding
the impact on the atmosphere caused by a possible release of large amount of their gases, such as
methane and ethane, due to widespread decoupling of them on Earth (Kvenvolden, 1993; Sloan,
2003; Chong etal., 2016). Besides that environmental importance, gas hydrates are unconventional
petroleum resources with great potential energy, due to the fact that they have a carbon quantify
twice more than all fossil fuels combined and are distributed evenly around the world (Chong et
al., 2016). Furthermore, studies point the presence of methane clathrates outside the Earth, as on
Mars (e.g., Oze and Sharma, 2005; Chastain and Chevrier, 2007; Hu et al., 2016; Webster et al.,

2018). Thereby, terrestrial gas clathrates serves as analogues in the study of Mars.

One of the countries that most develops studies about gas hydrates is Japan
(Matsumoto et al., 2011b; Chong et al., 2016). The study area of this dissertation is Umitaka Spur,
an anticline located in the Joetsu Basin, eastern margin of Japan Sea. It is a province well known
for the occurrence of gas hydrates. According to Matsumoto et al. (2011c¢), studies focusing on the
origin and significance of shallow, massive to fracture-filling gas hydrates in this place began since
2004 by a research consortium of universities, national institutes and industries. Thus,
miscellaneous studies involving gas hydrates issues in this area have been carried out, such as
acoustic and seismic surveys (e.g., Saeki et al., 2009; Ayoama and Matsumoto, 2009; Nakatani et
al., 2013), geophysical (e.g., Santos et al., 2009; Santos et al., 2020), geochemical and geological
analysis (e.g., Matsumoto et al., 2005, 2009, 2011a,b, 2017 a,b; Freire, 2010; Freire et al., 2009,
2011, 2012; Kakuwa et al., 2013; Nakajima et al., 2014; Hiruta et al., 2016).

Accordingly, for this work, 2D Single-Channel Seismic (SCS) profiles acquired and
provided by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) to
Universidade Federal Fluminense (UFF) were used. These data are from two Expeditions, NTO7-
20 and NT08-09, which occurred in 2007 and 2008, respectively. In order to estimate the Base of
Gas Hydrate Stability zone (BGHSZ), the goal of this work is to highlight Bottom Simulating
Reflectors (BSRs) of all these seismic profiles, which are seismic features related to the BGHSZ.
Due to the complexity of the geological framework, without the aid of a seismic attribute, it
becomes very difficult for an interpreter to characterize the real BSRs without making mistakes,
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because of the ambiguity intrinsic to this geophysical seismic method. Therefore, in order to
highlight the real BSR of each seismic section, six seismic attributes were applied in this work,
using the Schlumberger Petrel 2019 license available to UFF. These seismic attributes were
Envelope, RMS Amplitude, Amplitude Volume Technique, Relative Acoustic Impedance,
Spectral Decomposition and Instantaneous Frequency. Respectively, two attributes that measure
amplitude (Envelope and RMS), two of geological assignment (AVT and RAI) and two that
measure the frequency of the seismic signal (Spectral Decomposition and Instantaneous
frequency) were used. The contribution of this work is the knowledge of the effects of the
application of six seismic attributes in the identification of BSRs and free gas zones in seismic
profiles from this area, which is also useful for others areas of the world. For instance, show which
seismic attribute is useful to reduce the geophysical ambiguity of regions with “double BSRs”
(e.g., Posewang and Mienert, 1999; Foucher et al., 2002; Hornbach et al., 2003; Nakajima et al.,
2014).

1.1 Dissertation Structure

In the next chapter (Chapter 2) will be approached about gas hydrates and them
relevance. Third, the study area in Chapter 3. Then, in the Chapter 4, a literature review about
geophysical elements will be talked, such as seismic reflection method and seismic attributes.
Chapter 5 will address the methodology used in this study and the results of this work will be
discussed in Chapter 6. Finally, the conclusions (Chapter 7) followed by the references used in this

dissertation. The extra parts performed in this work are in the Appendix.

Chapter 2 GAS HYDRATES

Gas hydrates or natural gas clathrates are crystalline solid compounds formed by water
molecules (H20), which trap one or more gases inside them. They have a solid physical appearance
similar to solid water ice (Figure 2.1). Its interiors can consist of hydrocarbons, such as methane
(CH4) and ethane (C2Hs), or non-hydrocarbons, such as carbon dioxide (CO.), hydrogen sulfide
(H2S), hydrogen (H.) and nitrogen (N2) (Sloan, 2003). Due to the fact that methane gas is the most

commonly found gas stored, gas hydrates are also known as methane clathrates.



12

o
-
oy
93
8
Z
&
=
&
&
i
E
v
o4
S

Figure 2.1. Gas hydrates-bearing sediments recovered by piston-core in Joetsu Basin, eastern margin
of Japan Sea. (A) Fracture-filling gas hydrate (Freire et al., 2012) (B) Blocky-gas hydrates fragments (Freire,

2010).

The chemical structures of gas hydrates are distinguished into three categories: Cubic
Structure 1, Cubic Structure Il and Hexagonal Structure H (Figure 2.2). The formation of these
three structures will depend on the conditions of temperature and pressure, the amount of water
trapped, the size and the chemical nature of the gas molecules (Sloan, 2003; Chong et al., 2016).
For instance, thermogenic gases typically generate type Il and H structures (Chong et al., 2016).
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Figure 2.2. The three common hydrate unit crystals structure (Sloan, 2003).

2.1 Gas sources

There are three types of hydrate natural gas genesis: biogenic, thermogenic and abiotic
(Figure 2.1). The origin of biogenic methane gas is the most commonly found and it occurs through
biological processes at low temperatures, derived from the actions of methanogenic bacteria,
which consume carbon dioxide (CO.) and release methane (CHas) in its metabolism, in shallow
zones of the sedimentary package, less than 1000 meters (Paull et al., 1993; Clennell, 2000).
Hence, biogenic gases have high methane purity (C1/C2>100), according to Chong et al., 2016.
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Otherwise, a thermogenic origin occurs by thermal cracking of organic matter of fossil origin at

great depths and high temperatures, inside the sedimentary column of a basin, in deep zones where
temperatures can vary between 80-100 °C (Paull et al., 1993; Clennell, 2000).
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Figure 2.3. Methane origin on Earth. (Etiope, 2016)

Unlike biogenic gas, thermogenic gas does not have a high purity of methane gas

(C1/C2<100). The distinction between these origins can also be made by geochemical analysis of
the stable isotopes of carbon (*3C/*?C) and hydrogen (?H/*H) (Schoell, 1980 in Etiope, 2015). For

instance, thermogenic gas has an isotopic carbon 13 signature greater than -60%, while biogenic
has a signature less than -60%, (Bernard et al, 1976 in Kvenvolden, 1993). As can be seen in

Figure 2.4, we have the Bernard Diagram from Off-Joetsu area, Japan, where hydrate-bound gas

is generally dominated by methane with C1/(C2+C3) ratio of 400 or more while isotopic carbon

13 signature widely ranges from -74%, to -30%, VPDB (Matsumoto et al., 2017a).
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Figure 2.4. Bernard plot of hydrate-bound gas from Oki Trough, Mogami Trough (MT), Joetsu Knoll (JK) and
Umitaka (UT), Off-Joetsu area, Japan.

On the other hand, the abiotic origin is the least common and it is neither biogenic nor
thermogenic (Figure 2.3). Abiotic hydrocarbons arises from geological processes such as low
temperature (<100-150°C) serpentinization in ophiolitic rocks (ultramafic rocks), and from
geothermal processes in high temperatures (>150-200°C) in volcanic or hydrothermal settings
(Etiope et al., 2011). For instance, serpentinization of olivine and pyroxene (Oze and Sharma,
2005) produces large amounts of hydrogen (H2) which in theory may react with CO2 or CO to
form hydrocarbons, also known as Fischer-Tropsch Type (FTT) reactions (Etiope et al., 2011).

2.2 Base of the Gas Hydrates Stability Zone

Gas hydrates are stable only under specific pressure-temperature conditions. They are
stable at high pressures (typically above 0.6 MPa) and at low temperatures, generally below 27°C
(Sloan, 2003). This maximum stability temperature may vary depending on the gas composition.
For example, mixture of gases (such as methane, ethane and propane) are more resistant at higher
temperatures and lower pressures than a pure methane hydrate, so they can exist in deeper depths
(Chong et al., 2016).
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The Base of the Gas Hydrates Stability Zone (BGHSZ) marks the maximum depth and
the maximum temperature of gas clathrate stability (Figure 2.5). In the pressure-temperature
domain, the position of phase-boundary is determined not only by the composition of the gas
mixture, but also by geothermal gradient and in situ properties, such as ionic impurities in the
water and pore sediment type and permeability (Kvenvolden, 1993; Chong et al., 2016). For
instance, in Figure 2.5, according to Chong et al., 2016, methane mixed are computed via CSM
Gem (Sloan and Koh, 2007), with a model natural gas mixture consisting of 93% methane, 5%

ethane and 2% propane.

Thereby, the occurrence of gas hydrates is restricted to shallow geosphere. It is
distributed (Figure 2.6) in permafrosts of polar continental regions and on continental slopes
(marine environments) where water depths exceed about 300 m (Kvenvolden, 1993). According
to Makogon et al. (2007), over 220 gas hydrates deposits have been discovered. The yellow balls
correspond only to the hydrate deposits indirectly inferred by the seismic reflector called BSR
(Figure 2.6), as will be seen in the following subsection (2.3). So, this map (Figure 2.6) is not
current, for instance, along Brazil’s continental margin nodules of gas hydrates in sediments were
recovered by piston cores from Rio Grande Cone, in the Pelotas Basin, western South Atlantic
margin (e.g., Miller et al., 2015; Ketzer et al., 2019, 2020), and from Amazon deep-sea fan, in the

Foz do Amazonas Basin, in the Equatorial Atlantic margin (e.g., Ketzer et al., 2018).
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retrieved from Birchwood et al., 2008 (Chong et al., 2016).
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Figure 2.6. Worldwide distribution of gas hydrates deposits. The white arrows were inserted by us to highlight the
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2007).

2.3 Indirect detection of Gas Hydrates

The seismic reflection method is a geophysical method widely applied in the
recognition of gas hydrates. In marine seismic profiles, the presence of gas hydrates in sediments
is associated with two main seismic features: blanking and Bottom Simulating Reflector (BSR).
Blanking is a transparent seismic effect caused by the reduction of amplitude. It is typically
observed above the BSR due to the shadow effect of high reflective “hard-ground” near the
seafloor (Matsumoto et al., 2017a), and also associated vertically with gas chimneys, such as rising
fluids in the BGHSZ (Wood et al., 2002) and free gas bubbles within the fractures (Zuhlsdorff and
Spiess, 2004 in Chun et al., 2011).

Bottom Simulating Reflector is a seismic reflector that is parallel and has a reverse
polarity in relation to the seafloor reflector (Figure 2.7), besides being an indicator of the BSHGZ
(Kvenvolden, 1993; Buffett, 2000). This occurs due to the fact that the BSR has a negative
impedance contrast, because it is a coefficient reflection at an interface between the high-velocity
of gas hydrate cemented sediments and the underlying low-velocity gas-bearing sediments. The
increase in velocity in the overlying layer is assigned to the presence of icy solids in pore volume
due to the presence of gas hydrates which can cement and strengthens the sediment matrix (Stoll
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etal., 1971; Dvorking et al., 1991 in Buffet, 2000). Whereas lower sediments below BSR are filled

with free gas in the pore space that reduce P-wave velocities.

Several studies involving seismic velocity field reveal this. For instance, Tinivella et
al., (2009) when generating a smoothed velocity field after a tomographic inversion, obtained a
velocity increase from 1800 m/s to about 2500 m/sin the corresponding layer of gas hydrate-
bearing sediments whereas in the layer below (free gas layer) about 1400 m/s, in South Shetland
Margin, offshore the Antarctic Peninsula. Another example, Posewang and Mienert (1999)
reported anomalously high velocities with a maximum of 1850 m/s immediately above the BSR

whereas below it extremely low velocities about 1400 m/s.

200

Depth (m)

400

1 2 3 45 -5 0 50
Impedance Synthetic

Figure 2.7. Simple synthetic that reproduces the main features of the BSRs (Dallimore and Hyndman, 2001)

However, this identification of the true BSR corresponding to BGHSZ is not always
trivial, because there may be cases of the occurrence of seismic reflectors similar to BSR. For
instance, there are several studies that address the occurrence of more than one BSR (e.g.,
Posewang and Mienert, 1999; Foucher et al., 2002; Hornbach et al., 2003; Nakajima et al., 2014).
For instance, Posewang and Mienert (1999) reported a presence of double BSR in sections of

seismic reflection profiles from the Storegga Slide area west of Norway. In addition to Norway,
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there are reports of double BSR detected in seismic profiles from Japan too. As is in Nankai
Trough, Japanese east coast (e.g., Foucher et al., 2002) and on the eastern flank of Joetsu Knoll,

Joetsu Basin, Japanese west coast (e.g., Matsumoto et al., 2009; Nakajima et al., 2014).

For instance, note in Figure 2.8, there is more than one seismic reflector with reverse
polarity in relation to the seafloor reflector, being parallel to it. The reasons for the occurrence of
this are uncertain. There are many hypotheses about this. First hypothesis, these reflectors can
mean changes in the BGHSZ due to sea level change or temperature change of bottom waters
between Quaternary glacial-interglacial cycles (Posewang and Mienert, 1999; Matsumoto et al.,
2009; Nakajima et al., 2014). Thus, one of these reflectors would be a “current BSR” while the
other would be a “Paleo-BSR”. For instance, Hornbach et al. (2003) interpreted a “current BSR”
and a “Paleo-BSR” in seismic profiles from Blake Ridge, United States.
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Figure 2.8. Zoomed seismic section from the upper slope of the eastern Nankai margin, Japan (water depth 720-
730 m) displaying amplitudes and phase of the two BSRs (Foucher et al., 2002).

However, regarding to the Last Glacial Maximum (LGM), around 18 ka B.P., there
are questions about the distinct effects on the stability curve of the consequences of the decrease
in temperature and the sea level fall. The decrease in temperature would cause a down-shift of the
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GHSZ, whereas the sea-level fall would cause a hydrostatic pressure release so, lead to an uplift
of the GHSZ (Posewang and Mienert, 1999; Matsumoto et al., 2009). For instance, Foucher et al.
(2002) studied the effects that changes in pressure and temperature in sediments cause on the base
position of the GHSZ (Figure 2.9).

Effect of tectonic uplift or sea level fall

Effect of sea bottom warming
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Figure 2.9. Sketch illustrating the displacement of BSR (at base of gas hydrate stability zone) as a consequence of a
retracting zone of gas hydrate stability in response to a pressure decrease at the seafloor consecutive to tectonic uplift
or sea level fall (left), or a sea bottom warming (right) (Foucher et al., 2002).

Beyond these hypotheses, other factors that must be considered. Extra BSR could be
a reflector related to a sedimentary heterogeneity inherited from deposition or maybe irreversible
sediment alteration in zones of formation or dissociation of hydrates (Foucher et al., 2002). For
instance, it could be a carbonate precipitation or a bacterial methane oxidation near hydrate
accumulations in the sediment, depending on the study area. For example, Foucher et al. (2002)
reported that “near surface precipitation of authigenic carbonates is a common occurrence at
seepage sites and outcrops of cemented sediments have been observed at many locations on eastern
Nankai margin (Ashi and Tokuyama, 1998; Lallemand et al., 1992; Henry et al., 1999; this issue)”.
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In the seismic data used in this work from Umitaka Spur, Japan, more than one seismic
reflector with reverse polarity in relation to the seafloor reflector, being parallel to it was also
found. In my opinion, the “Paleo BSR” hypothesis is the least correct, because BSR is a seismic
reflector that represents the impedance contrasts between GHSZ and the free gas zone below it.
Thus, when the phenomenon ceases, this impedance contrast would cease. Therefore, this negative
reflection coefficient would imply a physical anomaly due to other reasons, such as sedimentary
heterogeneity. Thus, this work highlighted the importance of applying seismic attributes to
distinguish a true from a false BSR. The discussion of the results and their interpretation are in
Chapter 6.

2.4 Direct identification

The presence of gas hydrates can be observed directly near the seafloor through
geological features, such as mounds (Figure 2.10) and pockmarks, and through direct sampling by
piston and push cores. Mounds and pockmarks are geological features associated with gas hydrates
occurrence because the concentration of gas hydrates increases the volume in the pore space
arrangement mounds and the dissociation of gas hydrates causes the collapse of the sediments,

generating pockmarks.

Figure 2.10. Outcrop of gas hydrates in a mound in the central part of Umitaka Spur. Photograph was taken by
JAMSTEC’s Hyper Dolphin ROV (Freire, 2010).
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For instance, in Joetsu Basin (study area of this work), thorough surveys of mounds
and pockmarks in this area revealed that the mounds are characterized by actual gas hydrate
activities while the pockmarks had been formed as an result of the collapse of mounds caused by
large-scale release of methane during the Last Glacial Maximum (LGM), as proposed by
Matsumoto et al. (2009).The sea-level fall during the LGM, could have caused the BGHS to
become destabilized, causing the dissociation of gas hydrates and thus the upward migration of
methane gas and sand (Figure 2.11). Hence, this would cause the collapse of mounds, generating
turbidity currents and slumps or slides.

@ Sea-level fall

Explosion / collapse
mounds

Jpward migration of
methane gas and sand
dissociation
of gas hydrate

Shallow sand
reservoir

Figure 2.11. Conceptual model exhibiting the formation of pockmarks and submarine canyons on the Joetsu Knoll,
in Joetsu Basin, eastern margin of Japan Sea (Nakajima et al., 2014).

Besides that, after a drilling well, sedimentary intervals with gas hydrates in a
geophysical logging are generally known to have high velocities Vp and Vs, low dielectric
constant, high resistivity and thus low thermal conductivity (Goldberg et al., 2000). For instance,
note in Figure 2.12b that at about 115 meters below seafloor (mbsf), the J24 LWD values have an
extremely low natural gamma-ray (0 API), a high resistivity of 100 to 1000 ohm-meters and a high
acoustic velocities (Vp) of 2500 m/s to 3500 m/s (Matsumoto et al., 2017b). Therefore, these
values correspond to the sedimentary intervals with gas hydrates.
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Furthermore, note in Figure 2.12a, that the BSR in gas chimneys appears at 0.12s to
0.14s two way time (TWT), while in the surrounding sediments, BSR depth ranges from 0.20 to
0.22 second TWT below seafloor. Besides that, observe the blanking zones associated with the
gas chimneys. According to Matsumoto et al. (2017b), the sharp pull-ups strongly indicate that

high velocity material, perhaps gas hydrate, exists within the gas chimneys.
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Figure 2.12. Data from the central part of the Joetsu Basin, Japan. (a) high-resolution 3D seismic profile; (b)
Logging-while-drilling (LWD) profiles at Sites J24, J14, and JO6 on the HR 3D profile (Matsumoto et al., 2017b).

2.5 Recovery techniques

Briefly, gas hydrates recovery methods consist of destabilizing the Base of the Gas
Hydrate Stability Zone (BGHSZ). The challenges of theses explorations are related to the
endothermic tendency of gas hydrates and with the geohazards associated with low sediment
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compaction, due to the shallow depth of the BGHSZ, which can generate seafloor mining.
Although there is still no exploration of hydrates on a large scale, the main methods proposed are

depressurization, thermal stimulation and chemical inhibitor injection (Figure 2.13).

Pressure (MPa)

Temperature (deg C)

] Hydrate Field Location
............ CH, hydrate + 30 wt% MEG

— — — CO, Hydrate Phase Equilibrium
———— CH, Hydrate Phase Equilibrium
———-— CH,/C H, (99.5/0.5 mol%)

Figure 2.13. Schematic Diagram of commonly proposed gas hydrates recovery techniques. Red arrows indicate
depressurization (vertical), thermal stimulation (horizontal) and combination of both methods. Blue arrows indicate
inhibitor injection technique. Green zone indicates CH4-CO2 exchange (Chong et al., 2016).

The depressurization technique achieves gas production by lowering the pressure,
whereas the thermal stimulation increasing the temperature of the hydrate deposit below the
hydrate equilibrium at the local pressure-temperature conditions, dissociating into water and gas
(Chong et al., 2016). The advantage of depressurization is that it requires less energy as compared
to thermal stimulation, but it requires heat transfer and the drilling of many wells to achieve
production at adequate levels. Thus, the solution to increase your productivity is to use
depressurization technique mutually with the thermal stimulation, such as the huff and puff method
(Song et al., 2015; Chong et al., 2016).Whereas chemical inhibitor injection method involves

introduction of chemical (thermodynamic and kinematic inhibitors) that can alter the phase
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boundary of hydrate system such that the hydrate dissociates at in situ conditions. Ethylene glycol

and methanol are thermodynamic inhibitors, for example.

Besides that, the displacement of the phase boundary with the injection of carbon
dioxide is an interesting method, because in addition to allowing methane to be recovered from
hydrate reservoirs, it sequester CO>, which could be a future form of cleaner energy (Chong et al.,
2016). According to Chong et al. (2016), dioxide carbon injection and CH4/CO. exchange process
assists in recovering methane from hydrate reservoir and at the same time be sequestered in the
natural formation as CO> hydrate (Ohgaki and Inoue, 1995; Ebinuma, 1993). Assuming an ideal
scenario where the same amount of, if not more, CO is captured in the formation than natural gas

produced, the energy generation process can become carbon neutral (Chong et al., 2016).

Low hydrate dissociation rate is observed when the hydrates dissociates at temperature
below freezing temperature ice point (less than 0°C) yet outside the BGHSZ. This phenomenon is
known as “self-preservation” or “anomalous preservation” (Handa et al., 1986; Shimada et al.,
2005; Komai et al., 2004 in Chong et al., 2016). The explanation for the phenomenon is that the
endothermic heat of the dissociation causes an endothermic reaction of the hydrate, causing the
dissociated water to solidify, forming ice, thus preventing further dissociation within the hydrate
region. The disadvantage is that it is difficult to have gas production by depressurization and
thermal stimulation. The advantage is that the gas hydrate can be used as a means of transport and

storage of natural gas in the long term, such as space travel.

2.6 Relevance of the study of gas hydrates

Studying gas hydrates is important both scientifically and economically. Monitoring
them is relevant for geologic hazard prevention, paleo environment studies and even, search of
origin of life in Mars and potential fuel for space travel. For example, the presence of gas hydrates
in subsea pipelines can block flows in oil and gas activities, being an industrial risk (Makogon et
al., 2007). Therefore, it is important to study them to inhibit them within these ducts.
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2.6.1 Geohazards Prevention
As previously seen in sections (2.3 and 2.4), the study of hydrates is crucial in
understanding paleoclimates. There are hypotheses that during the LGM, despite the decrease in
temperature being favorable to the increase in the depth of the BGHS, the resulting drop in sea
level could have generated the migration of the BGHS upward. So, consequently generate the
migration of gas and sand upwards and the collapse of mounds and finally, submarine landslides
(Nakajima et al., 2014). Thus, it is important to understand the consequences of the past to prevent

those of the future.

For example, in the same way that a possible dissociation of gas hydrates can lead
submarine slides and slumps (Kvenvolden, 1993), and thus, local tsunamis, it on a large scale
would consequently emit greenhouse gases into the atmosphere, which could generate global
warming. According to Sloan (2003), Kennet et al. (2003) thoroughly documents the evidence of
late quaternary climate change caused by hydrates, commonly called the "hydrate gun hypothesis",

in which hydrate methane caused significant global warming less than 15 ka.

2.6.2 Studies on Mars

Gas hydrates on Earth serves as analogues in studies of the climate system of Mars.
According to Webster et al. (2018), since 2004, there have been numerous reports of methane in
Mar’s atmosphere by Earth-based remote sensing and from Mars orbit. For instance, the Curiosity
rover from NASA (National Aeronautics and Space Administration) recently detected strong
seasonal variations of methane in the Martian atmosphere (Figure 2.14) and scientists want to
understand the reasons for this (Chanstain and Chevrier, 2007; Hu et al., 2016; Webster et al.,
2018).



28

-
o

N.Spring | N.Summer | N. Autumn | N. Winter

@® CH4inMY32
O CH4inMY33
© CH4inMY34

<
IS

o
(o]
1

684

1
N
N

1451

3
% 4

o
[e2]
1

1709 573

o
~
1

1
o
®

Methane Abundance (ppbv)
o
N

Atmospheric Pressure (mbar)

10886

1
bt
o

0.0 LU N T T B PR A A TR N o R G
0 40 80 120 160 200 240 280 320 360

Solar Longitude (degrees)

Figure 2.14. Strong seasonal variation of methane in the Martian atmosphere (Webster et al., 2018).

Then, a lot of questions have arisen regarding the origin of this methane gas in the
atmosphere of Mars. One of the hypotheses pointed out would be the emission from gas hydrates
dissociation (Figure 2.15). In addition, as gas hydrates on Earth have three different types of
sources (biogenic, thermogenic and abiotic), this has also led to other debates. For example, if the
biogenic origin of a gas clathrate on Mars were proven, this would be a tracer of life outside Earth
(Oze and Sharma, 2005).
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Figure 2.15. Possible Methane Sources and Sinks on Mars. (NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan,
2014).

However, it is believed that the origin of Martian hydrates is abiotic, due to geological
processes at low temperature from serpentinization in ultramafic rocks, such as olivine. Thereby,
there are many questions to be resolved about Mars and gas hydrates play a key role in these
searches.

2.6.3 Energy Matrix
Beyond these scientific factors, gas hydrates have a prominent energetic potential. For
instance, according to Kvenvolden (1993), 1 m® of methane hydrate can contain up 164 m® of
methane gas and 0.8 m3 of water at standard temperature and pressure conditions. Besides that,
gas hydrates are the largest source of hydrocarbon in the world (Buffet, 2000), that have a carbon

quantity twice more than all fossil fuels combined (Chong et al. 2016).

For instance, according to Kvenvolden (1998), the Potential Gas Committee (1981)
estimated ranges of methane carbon values from a low of 1.4 x 10*m? of methane gas in Arctic
permafrost regions to a high 7.6x 10 m 3 of methane gas in oceanic sediment. Besides that, in
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unconventional reservoirs the gas hydrates serve as trap in the free gas zone, acting as a seal for
rising gas (Posewang and Mienert, 1999). Despite exploratory recovery difficulties, it is a good
future energy resource, because this energy is cleaner than oil and coal, even exist the method
which sequester CO- and catch the methane from gas clathrates reservoirs (Ledley et al., 1999 in
Tinivella et al., 2009; Chong et al., 2016).

Therefore, studying gas hydrates is very relevant, because this study is important both
on Earth and outside. Based on these chief issues covered throughout this introductory chapter,
this work aims to apply geophysical methods that highlight the BSRs and blanking, which are
seismic features associated with the BGHSZ, in seismic profiles. These seismic profiles were
acquired in a known province of shallow gas hydrates occurrence, as will be seen in the next

chapter.
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Chapter 3 STUDY AREA

3.1 Localization

The Joetsu Basin is located on the eastern margin of Japan Sea (Figure 3.1). In Joetsu
Basin there are two anticlines, Umitaka Spur and Joetsu Knoll. Since 2004, studies related to gas
hydrates origin and significance in this area have been carried out by a research consortium of
universities, national institutes and industries (Matsumoto et al., 2011c). The focus of this work is
the gas hydrates seismic features of the anticline Umitaka Spur.
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Figure 3.1. Schematic Map of the Study Area taken from Google Earth. (b) Joetsu Basin (Freire, 2010).

The Umitaka Spur is an asymmetric anticline with a nearly N-S trend and has been
formed since the Middle Pliocene, when the tectonic style changed from extensional to
compressive (Takeuchi, 1996 in Freire et al., 2011). The spur is located approximately 30 km
offshore Joetsu city (Figure 3.1) and encompasses an area of 43 km?. The crest is at a water depth
around 900 m and the base of the spur is around 1100 m of water depth. This anticline has a gentle
slope to the eastern side and a steep slope in the west side (Freire et al., 2011).
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North of Umitaka Spur is the anticline Joetsu Knoll. Joetsu Knoll is also an asymmetric
anticline, with a 22 km long and 7 km wide NE-SW trending, but it began forming more recently,
since the Pleistocene (<1.3Ma), during Quaternary (Muramoto et al., 2007 in Nakajima et al.,
2014). The southern part of Umitaka Spur is connected to the continental slope, which plays an

important role in the contribution of sediments as debris-flows (Freire et al., 2011).

3.2 Geology Setting

Japan Sea is a composite back-arc basin formed behind the Japanese island-arc system
initiated by the rifting of the eastern margin (Figure 3.2) of the Eurasian Continent (Suzuki, 1979
in Okui et al., 2008), accompanied respectively by clockwise and counter-clockwise of
southwestern and northeastern Japan, during the Early Miocene (Otofuji et al., 1985 in Nakajima
et al., 2014). The Joetsu Basin was also formed in the Miocene. During the Middle Miocene, due
to initial rifting, there was a marine transgression, thus, the Joetsu Basin was filled chiefly by deep-
marine siliceous shale with minor sandstone (Okui et al., 2008). During this epoch, a high
production of organic matter under anoxic conditions favored the development of good source
rocks from the Nanatani (16-12.5 Ma) and Lower Teradomari (12.5-8 Ma) formations (Hirai et al.,
1995 in Okui et al., 2008).
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Still in the Miocene, from around 10 Ma to 7 Ma, the Japan Sea was tectonically stable
(Freire et al., 2011). Thus, from the Late Miocene to the Pliocene, coarse-grained sediments
(tuffaceous sandstone and siltstone) were transported to the Joetsu Basin and deposited as
turbidites fans, which became primary reservoirs in the Lower Teradomari (12.5-8 Ma), the Upper
Teradomari (8-5.5 Ma) and the Shiiya (5.5-3.5 Ma) formations (Sato et al., 1987 in Okui et al.,
2008).

During the Pliocene, the eastern margin of the Japan Sea changed into an E-W
compression, accompanied by basin inversion (Okamura et al., 1995 in Nakajima et al., 2014).
Hence, engendered kitchen areas with matured source rocks and a series of northeastern-trending
to southwestern-trending anticline-syncline have been created (Okui et al., 2008). Thus, several

potential petroleum traps were formed during this period (Imamura, 2000 in Okui et al., 2008).

Overlapping the Shiiya formation, the Nishiyama (3.5-1.3 Ma) formation is composed

mainly of fine mudstones with sandstones, including also volcanic rocks, such as dacites and
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andasites (Freire et al., 2011). The most recent formation is Haizume, it has been deposited since

the Late Pliocene and it is dominated chiefly by clayey sediments (Son et al., 2001 in Freire et al.,

2011). Currently, an incipient subduction occurs between the Amur and Okhotsk plates (Figure

3.3).
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3.3 Petroleum System

In Joetsu Basin, a total of three explorations wells were drilled (Figure 3.4), two in

Umitaka Spur in 2004 (METI Sado Nansei Oki-Shallow and Deep; Okui et al., 2008) and one in
Joetsu Knoll in 2013 (Joetsu Kaikuy; Okawa et al., 2016; Nguyen et al., 2016) by the Ministry of

Economy Trade and Industry of Japan (METI). Some of the lithological information from previous

section (3.2) was taken from integrated studies of these two wells, METI Sado Nansei Oki-Shallow

(water depth 971 m) and Deep (water depth 885 m).These wells were drilled after an acquisition

of a 3D seismic survey in 2001. This survey had a prominent role, because through it important

information and samples were collected, such as methane hydrates (Okui et al, 2008). During this
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survey gas bubbles were observed escaping from the seafloor near the top of the Umitaka Spur
structure and small amounts of oil were recovered from soil samples.
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Figure 3.4. Well correlation (Okawa et al., 2016).

Part of the history of the active petroleum system was told in the previous section (3.2).
Despite the maturation of the source rock has occurred only since the Pliocene, oil and gas
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generated and migrated very quickly (Okui et al., 2008). First, they migrated horizontally along
sandstones networks from Teradomari and Shiya Formations (Figure 3.5). Then, vertically through
faults reaching the Nishiyama Formation. However, this trap has leaked and some gas pass through
the Haizume Formation, reaching the seafloor.

The occurrence of seeps and plumes escaping from the seafloor indicates the lack of
trapped gas (Matsumoto et al., 2005; Aoyama and Matsumoto, 2009 in Freire, 2010). Although
the weak efficiency of both seal and trap for conventional oil and gas production, this scenario is
perfect for gas hydrates reservoirs due to the gas supply (Freire, 2010). The existence of source
rock, the thermal history of the Joetsu Basin and the vertical fault system of the Umitaka Spur,
associated with the temperature and pressure conditions (low temperature and high pressure)
provide the necessary circumstances for the precipitation of methanogenic gas hydrates (Freire,
2010).

3.4 Previous studies about gas hydrate

Besides that acquisition of a 3D seismic survey in 2001 reported by Okui et al. (2008),
an analogue observation of a number that large depressions Joetsu Basin, that looked similar to
gas venting pockmarks of the Atlantic and Pacific margin of North America were recognized in
2003, during a reconnaissance and geotechnical survey for the deep exploration well targeted
conventional oil and gas (Matsumoto et al., 2011c). In addition, gas-chimney-like structures have
also been identified by deep-tow acoustic surveys and after research expeditions, a humber of
gigantic methane plumes were observed and massive gas hydrates were recovered from mound-

like topography nearby the pockmarks.
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Thereby, since 2004, a research consortium of universities, national institutes and
industries, have conducted a series of sea expeditions with the target to observe, to describe and to
understand the origin and significance of shallow, massive to fracture-filling Joetsu gas hydrates
(Matsumoto et al., 2011b). Thus, miscellaneous studies involving gas hydrates issues in this area
have been carried out, such as acoustic and seismic surveys (e.g., Saeki et al., 2009; Ayoama and
Matsumoto, 2009; Nakatani et al., 2013), geophysical (e.g., Santos et al., 2009; Santos et al., 2020),
geochemical and geological analysis (e.g., Matsumoto et al., 2005, 2009, 2011a,b, 2017a,b; Freire,
2010; Freire et al., 2009, 2011, 2012; Kakuwa et al., 2013; Nakajima et al., 2014).

According to Matsumoto et al. (2011a), these pockmarks and mounds have about 50
to 500 m in diameter and 10 to 50 m deep and high, respectively. They are mainly observed on the

crestal zone of Joetsu Knoll and Umitaka Spur (Figure 3.6).

Around and on mounds of Umitaka Spur and Joetsu Knoll, a number of gigantic
methane plumes (600-700 high) and numerous gas venting sites have been observed (Figure 3.7).
These sites are close associated with bacterial mats and carbonate crusts and concretions
(Matsumoto et al., 2011a). Through the geochemical analysis of the carbon isotope ratio, the
origins of these methane were identified (Okui et al., 2008; Freire, 2010; Matsumoto et al., 2011b,
2017a). Thus, thermogenic and biogenic methane generation occur in Joetsu Basin. Most of these
gases are thermogenic, this was confirmed by the carbon isotope ratio values heavier than -50%o.
Whereas carbon isotope ratio of ascending mixed gas is increasingly depleted in *3C (Freire, 2010;
Matsumoto et al., 2011b). Deep-seated gas migrates through the host sediments, in which
microbial methane generation is taking place (Matsumoto et al., 2011a). For instance, in Figure
2.4 was shown the Bernard Diagram from Off-Joetsu area. Note the mound values from the central-
west of the Umitaka Spur (“UT-CW mound at J24” in Figure 2.4), they are from typical
thermogenic source, with isotopic carbon 13 signature values of -40%, to -30%, VPDB
(Matsumoto et al., 2017a).
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Figure 3.7. Methane plumes occurrence in Umitaka Spur. (A) A methane plume capture in row data of the Side Scan
Sonar (400 kHz) from UROV (Nakatani et al., 2013). (B) Image taken from ROV Hyper Dolphin (2007).

Moreover, through previous studies of seismic surveys, such as 3D and 2D, BSRs and
blanking zones have been identified (e.g., Saeki et al. 2009; Matsumoto et al., 2009, 2011a,b,
2017a,b; Freire et al. 2011; Nakajima et al., 2014). These seismic surveys play a prime role in
understanding gas hydrates occurrence. For instance, through the methane hydrate stability
equation in seawater proposed by Dieckens and Quinby-Hunt (1994), Matsumoto et al. (2009)
infer a depth of 115 mbsf to the Base of the Gas Hydrate Stability in Umitaka Spur (Figure 3.8),
where the bottom water temperature and thermal gradient are 0.3 °C and 10 °C/100 m, respectively
(Matsumoto et al., 2011b).



41

800 g+

850 H "

900

180ms- 330ms

1000 [
| Thermal grad
=95mK/m

e

75(7WVT)_:2'20£23Oms

/

1050 F

Depth below sea-level, m

1100 F

£ BGHS(BSR)
r =135m \

1200 | IR N =i (B (e 1S
0 5 10
Temperature, °C

Figure 3.8. Estimation of the depth of BGHS on Umitaka Spur (~900 mbsf) and basin floor (~1000 mbsf)
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Furthermore, according to Matsumoto et al. (2011a), these seismic profiles served to
show that the gas chimney capped by mounds are not “mud volcanoes”, because reflections of
parallel layers around gas chimneys are traceable into the chimney. Thus, these indicate that the
sediments in chimneys are effective conduits of fluid-flow conveying deep-seated gas and gas-
containing waters. Besides that, several BSRs are observed in two ways, outside and within gas
chimneys. The BSRs outside the gas chimneys widely occur nearly horizontally, though weak and
discontinuous, in parallel to bedding on and around Umitaka Spur, at 0.20-0.23s two way travel
(TWT) below seafloor. Whereas BSRs within gas chimneys are strong, uneven and occur at 0.14-
0.18s TWT, revealing a velocity pull-up structure (Matsumoto et al. 2011a,b).

These lower TWT and high velocity anomaly “indicate massive accumulation of gas
hydrates in the shallow part of gas chimneys above BSR, because heat flow over gas chimneys is
observed to be nearly identical to the other area”, as reported by Matsumoto et al. (2011b).
Whereas, in the BSRs outside gas chimneys, low velocity anomaly is observed. For instance, Saeki
et al. (2009) through a velocity analysis of 3D seismic survey data reported anomalously low
velocities (1200-1300 m/s) above the BSR horizon, possible affected by the presence of free-gas
bubbles (Matsumoto et al., 2009, 2011b; Freire, 2010).



42

Beyond that, based on drilling data from METI Sado Nansei Oki-Deep and —Shallow
on the Umitaka Spur (Figure 3.4 and Figure 3.5) and the information of previous studies, such as
the recognition of the top of Nishiyama formation in SCS profiles (e. g., Okui et al., 2008; Saeki
et al. 2009), Freire et al. (2011) inferred the depths (mbsf) of each of the reflectors, using the top
of Nishiyama Fm. as a reference(Table 1). The only two horizons that were previously described
in the two wells were the bottom of the sea and the top of the Fm. Nishiyama, the horizons H1 to
H6 of Haizume formation were proposed by Freire (2010). Besides that, Freire et al. (2011)
estimated an average interval velocity on the sediments (Table 1) of the northern and southern part
of Umitaka Spur from 2D SCS surveys carried by the R/V Natsushima from the JAMSTEC (Freire,
2010). These 2D seismic profiles provided by JAMSTEC also are the object of study of this
dissertation (Chapter 5) and all these previous interpretations are fundamental to this work. For
instance, the Figure 5.2 shows these seismic profiles and the signatures of the carbon isotopes ratio
of samples taken from Umitaka Spur. More recently, after a high-resolution 3D seismic
acquisition, Logging-while-drilling (LWD) profiles at Sites J24, J14, and JO6 were done in

Umitaka Spur (Figure 2.12) and more accurate physical data were collected.

Table 1
Time, depth and velocity of Haizume Fm. Seismic events inferred from the depth of Nishiyama Fm. Observed on
both METI Deep and Shallow wells (Freire et al, 2011).

Depth and velocity of Haizume Fm. seismic events inferred from the depth of Nishiyama Fm. observed on both METI Deep and Shallow wells.

Epoch Stratigraphy Seismo Facies TWT(ms) OWT(ms) OWT{msbsf) Depth(mbsf) Velocity(m/s)
Data from US-03 (METI Deep Well)

Holocene Haizume Fm. Seafloor 1200 600

Pleistocene H1 1280 640 40 66 1659
H2 1390 695 95 158
H3 1480 740 140 232
H4 1550 775 175 290
H5 1620 810 210 348
H6 1750 875 275 456
Pliocene Nishiyama Fm. Nishiyama 1950 975 375 622

Data from US-29 (METI Shallow Well)

Holocene Haizume Fm. Seafloor 1300 650
Pleistocene H1 1370 685 35 57 1618
H2 1400 700 50 81
H3 1480 740 90 146
H4 1530 765 115 186
H5 1600 800 150 243
H6 1700 850 200 324
Pliocene Nishiyama Fm. Nishiyama 1750 875 225 364

TWT=two way travel; OWT=one way travel; msbsf=milliseconds below the seafloor; mbsf=meters below the seafloor.

According to Matsumoto et al. (2011a), the mechanism and timing of shallow

accumulation of gas hydrates have not been well understood due to the difficulty to penetrate down
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the mounds by piston and box core. Therefore, due to the difficulty of using direct method, the
indirect method remains the easiest way to understand gas hydrate accumulations. Thus, aiming at
these questions, this work seeks to collaborate with the understanding of the best tools of
geophysical analysis for the identification of seismic reflectors associated with the presence of gas
hydrates (BSRs), through 2D single-channel seismic data provided by JAMSTEC. For instance,
seismic attributes that aim to highlight the weak BSRs and blanking zone associated with gas

chimneys will be addressed in this work.
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Chapter 4 LITERATURE REVIEW

4.1 Seismic Reflection Method

The seismic reflection method plays a prominent role in the search for hydrocarbons.
Since the 1930s, it has been the most widely used geophysical technique (Reynolds, 2011) due to
high accuracy, high resolution and great penetration (Telford, 1990). Seismic exploration methods
are an offspring of earthquake seismology and involve basically the same type of measurements
as it. However, despite having similar measurement parameters, the energy sources are different.
Earthquake seismology uses natural seismic waves to estimate the physical nature of rocks,
whereas exploration seismic uses artificial elastic waves generated by a controlled and mobile
source (Sheriff, 1995).The arrival times and dips of these artificial seismic events, such as P-
waves, were received by receptors (Figure 4.1) and recorded by seismographs. In marine
acquisition these detectors are hydrophones, whereas in terrestrial environment are geophones.
Then, the information obtained, such as physical properties and geometry of subsurface structures,

are used in geological structure estimation (Taner, 2001; Reynolds, 2011).
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Figure 4.1. Raypath diagram showing the respectives paths for direct, reflected and refracted rays (Reynolds, 2011).

In the seismic reflection survey, the relative proportions of transmitted and reflected
energy are calculated by the contrast in acoustic impedance across the interface, which is the

reflection coefficient. The reflection coefficient is determined by the Zoeppritz’s equations
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(Equation 1; Zoeppritz, 1919), which measure the ratio of the amplitude and reduce to a very
simple form for normal incidence (Sheriff, 1995). The acoustic impedance of a rock is the product
of its P-wave velocity (v) and its density (p). The propagation of a P-wave will depend on the bulk

and shear elastic moduli, as well as the density of the material (Kearey, 2002).
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Therefore, in the seismic reflection method, the seismic energy pulses reflected by the
geological interfaces are recorded by receivers at an angle of incidence close to normal. In this
way, the travel times measured at the receivers can be converted into depth estimates of the

interfaces (Kearey, 2002).

The Compressional Wave velocity varies with depth, due to the different physical
properties of the layers (Equation 2), such as density (p), the bulk (k) and shear moduli of dry
marine sediments (G), as reported by Helgerud et al. (1999). For example, the trend is for velocity
to increase vertically with depth due to sedimentary compaction and may vary horizontally due to
lateral lithological changes within the individual layers. In addition, considering a constant
wavelength absorption value of a seismic pulse, waves of higher frequencies attenuate faster than
lower frequencies, as a function of time or distance (Kearey, 2002). So the tendency is for the

seismic pulse to progressively widen over time.

Vp = : ()

Then, based on the Properties of Sediment Constituents material table, conclusions can

be drawn about the properties of the gas-hydrate bearing sediment.
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Table 2

Properties of Sediment Constituents (Helgerud et al., 1999).
Constituent Volume K G P

(%) (GPa) (GPa)  (g/em’)

Clay 60 209 6.85 2.58
Calcite 35 76.8 32 271
Quartz 5 36.6 45 2.65
Gas Hydrate Variable 79 33 0.90
Water Variable 24-26 0 1.032
Methane Gas Variable  0.10-0.12 0 0.23

Thus, although the density of the gas hydrate is greater than that of methane gas, as
the Bulk volume of the gas hydrate is approximately 66 times greater than that of methane gas and
the shear moduli is also greater, the speed of primary wave of gas hydrate is much larger than that

of methane gas.

Therefore, as the BSR is the seismic interface between a layer filled with gas hydrates
and below it is the free gas zone, its reflectivity coefficient given by Equation 1 will be negative.
This is the physical theory behind the indirect method of identifying gas hydrates seen in
subchapter 2.3.

4.2 Seismic Processing

Through the acquired seismic data, a seismic processing must be performed to improve
the signal-to-noise ratio and make a better estimate of the velocities of the layers (Yilmaz, 2001).
In this way, it will be conceivable to extract the information necessary for the geological

interpretation of the processed seismic section.

The seismic processing flow is changeable according to the needs of each appraiser
(Yilmaz, 2001). Thus, there are several stages of seismic processing. However, as the focus of this
work is the application of seismic attributes, two steps will only be briefly addressed: filtering and

migration.
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4.2.1 Filtering
There are several types of filtering, including frequency filtering, inverse filtering and
velocity filtering. Among these, the two main ones are frequency filtering and inverse filtering.
The frequency filtering, such as band pass filter, has the advantage of increasing the signal to noise
ratio, but does not generate a good vertical resolution. While the inverse filtering, such as
predictive deconvolution, improves the vertical resolution, but has the drawback of not obtaining
a good signal-to-noise ratio (Kearey, 2002).

For instance, band pass filter is essential to remove the frequencies above the Nyquist
Frequency from the seismic data. The Nyquist frequency is the ratio of one over twice the time
sampling interval (Kearey, 2002). If there are frequencies higher than Nyquist in the seismic data,

there will be distortion, generating the well-known aliasing. Thus, a filter must be used to remove
these unwanted frequencies.

4.2.2 Migration
According to Schulte (2012) “migration is the process which the seismic data is
properly placed in the subsurface by moving event to their correct positions”. For instance, in
Figure 4.2 d, note the focus point, where the waves come together to form a single reflector.
Therefore, the velocity used in the “case d” would be the best migration velocity chosen in a
Diffraction Velocity Analysis Migration used by a data processor (Santos et al., 2020).
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Figure 4.2. (a) Seismogram and (b-f) the migration results of increasing the velocity from 1500 m/s to 2500 m/s at
each 250 m/s increment in a zero-offset migration. (Santos et al., 2020).
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Furthermore, in addition to collapse diffractions from seismic data, the migration step
is crucial for increasing spatial resolution. Then, it makes the seismic data more interpretable and
coherent (Claerbout, 1971; Yilmaz, 2001; Schulte, 2012; Santos et al., 2020).

4.3 Seismic Attributes

Seismic attributes are the main tools used to predict lithology of the seismic reflection
data and to do reservoir characterization, which can act as filters that quantify properties of seismic
images (Taner, 2001; Barnes, 2016). Figure 4.3 gives a brief overview of the history of evolution
of seismic attributes. According to Chopra and Marfurt (2005), some of the most important seismic
attributes emerged long before digital recording, during the time of papers records, such as
frequency analysis for optimization of filter settings from magnetic analog recording (Anstey,
2005). Note that (Figure 4.3), after 1970, seismic attributes started to be offered in color
commercially (Balch, 1971 in Taner et al., 1979) and complex trace analysis began to be made. In
this way, the complex trace allow the unique separation of envelope amplitude and phase
information and also the calculation of instantaneous frequency while the color seismic sections
assists the interpreter to visualize the spatial changes (Taner et al., 1979). From then on, the seismic

attributes and their uses have evolved to nowadays.
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Figure 4.3. A time line of seismic attributes developments (Modified from Barnes (2001) in Chopra and Marfurt,

2005).

As cited by Barnes (2016), Chen and Sidney (1997) distinguished seismic attributes

by the property measured into three types: geological, geophysical and mathematical (Figure 4.4).

Geological attributes record structural (dip, azimuth, curvature and discontinuity), whereas

geophysical attributes note properties of seismic waves and wavelets, such as amplitude, phase,
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frequency and bandwidth. Mathematical attributes are the least useful and they have lack inherent

geological significance. They record statistics of seismic data, such as averages, variances, counts

and ratios (Barnes, 2016).

Seismic attributes

Mathematical Geophysical Geological
Statistics Miscellaneous Wavelet Reflection pattemns
Mean Principal components Amplitude Polarity
Variance Spectral components Phase Response ampitude Discontinully
Skew Signal complexity Frequenc: Response phase "
Kurtosis Arc leng® i ,c,,! Res ponse frequency et smelide change
Total energy Energy half-tme Inst. quality factor Tuning frequency
Larges! value Effective bandwidth
Smaliest vaiue
Average absolute vaiue Refiection strength
Largest absolute value Root-mean-square amplitude hsl frequency
Number of peaks Relatve ampitude change Peak frequency Structural Stratigraphic Lithological
Number of troughs Amphtude acceleration Average frequency
Rato peaksftroughs Root-mean-square frequency Dip or slope Reflection spacng Qualtty factor
Percent above fireshokd Zero-crossing frequency Azmuh Spading change Porosity
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X Chaos measure P-wave velocity
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Most positive curvature Waveform Relative acoustic impedanct
Most negative curvature P-wave impedance
Gaussian curvature S-wave mpedance
Dip curvature Acoustic impedance
Strike curvature Elastic impedance
Amplitude curvature
Curvature gradient

Figure 4.4. Seismic attributes categorized by the property measured (Barnes, 2016).

In this work, geophysical attributes were used to measure some physical properties,
such as amplitude (e.g., Amplitude Envelope and Root Mean Square Amplitude) and frequency
(e.g., Spectral Decomposition and Instantaneous Frequency). Besides that, Amplitude Volume
Technique and Relative Acoustic Impedance are considered as a geological attribute for measuring

the relative lithological impedance (Figure 4.4), and they are also applied in this work.

Therefore, as the data used in this work are post-stack seismic data, in the following
subsections, the six seismic attributes used in the methodology of this study will be addressed.
First, the two attributes that measure the amplitude, Amplitude Envelope and Root Mean Square
(RMS) Amplitude will be defined. Sequentially, Amplitude Volume Technique and Relative
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Acoustic Impedance, whose process involves transforming a cosine wave into a sine wave (phase
change of -90°). Then, the seismic attributes that involves the frequency content analysis will be

addressed respectively, spectral decomposition and instantaneous frequency.

4.3.1 Amplitude Envelope
Amplitude envelope also called “Reflection Strength”, “Instantancous Amplitude” and
“Instantaneous Envelope” is a complex seismic trace attribute (Figure 4.5; Taner et al., 1979)

defined by the Equation 3. The real seismic trace is the f (t)while g(t) is the quadrature trace.

A(E) = (F()? + q(0)?)2 3)

The Envelope seismic attribute measures total instantaneous energy and has a direct
relationship to the contrast of acoustic impedance. So, this attribute allows a better emphasis on
the contrast of acoustic impedance of the BSRs.

Figure 4.5. Isometric diagram of portion of an actual seismic trace. Instantaneous Envelope highlighted in red.
(Modified from Taner et al., 1979).

For instance, this seismic attribute was used to identify BSRs in Brazilian regions, as
in Pelotas - RS by Barros (2009) and Foz do Amazonas (Aguiar et al., 2019). However, the
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drawback of this attribute is that it makes the seismic data loses some vertical resolution (Chen
and Sidney, 1997).

4.3.2 Root-Mean-Square (RMS) Amplitude
RMS amplitude is an amplitude attribute. Amplitude refers to the magnitude of the
seismic traces values or trace envelope. It measures (Figure 4.6) the variation of the average energy
in an interval between horizons or in volume (Barnes, 2016). Hence, it is always positive, as a
result, this attribute emphasis both positive and negative maximum amplitudes, and is independent

of the polarity or phase of the data.

This single-trace windowed attribute is useful to identify bright spots and dim spots
caused by gas, tuning, hard streaks or porosity changes (Barnes, 2016) and track lithologic changes
such as deltaic channel and gas sand (Chen and Sidney, 1997). For instance, Okui et al. (2008)
applied this seismic attribute to identify the porous sandstone reservoir corresponding to the Shiya
Formation, Umitaka Spur, in the study area (Chapter 3).

Thus, due to the fact that the study area of this work involves free gas zones migrating
through faults (gas chimneys) and gas hydrates that reduce the porosity of sedimentary layers, it
is interesting to apply these attributes. Besides that, for the application of the Amplitude Volume

Technique, it is necessary to apply this attribute.

4.3.3 Amplitude Volume Technique
The Amplitude Volume Technique (técnica Volume de Amplitudes — tecVVA) was first
proposed by Bulhdes (1999) and later it was expanded by Bulhdes and de Amorim (2005) being
possible to be used in seismic volumes both in time and in depth, based on the elementary seismic
bed. The elementary seismic bed is the layer of rock of less thickness that the seismic data can
solve and its thickness M, which is half of the shortest period (highest frequency),is used as a

weighting factor for the calculation of the tecVA seismic data (Bulhdes and de Amorim, 2005).

This technique consists of applying an inverse Hilbert Transform in the average Root-

Mean-Square or the average of the Absolute Values of the Amplitudes, which also consists of
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applying a phase shift of -90° in RMS Amplitude seismic attribute (Figure 4.6). To do this, you
first need to choose the window (M) in time or depth to be used in calculating the average RMS
(Bulhdes and de Amorim, 2005). The choice of this window is a decisive moment, because it will
be responsible for the resolution of the seismic data. For example, according to Vernengo and
Trinchero (2015), when the mobile window is very long, the result of the RMS calculation will be
perceived as a more softened trace with an aspect similar to that an envelope. Whereas when the
window is shorter, the aspect is different and the resolution is better (Barnes, 2016; Vernengo and
Trinchero, 2015).
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Figure 4.6. Volume Amplitude Technique equations and effects on seismic traces (Bulhdes and de Amorim, 2005).

Hence, as a result, this pseudo relief attribute comprises, at the same time, amplitude
data and the fluctuations of the seismic fundamental frequency (amplitude, frequency and
modulate phase). Then, being able to reveal seismic characteristics with small fluctuation, such as
faults and channels by trace-by-trace correlation (Bulhdes and de Amorim, 2005). Besides that, it
is useful to highlight the high impedance contrasts and, consequently, to enhance the geology
embedded in the seismic data, highlighting the discontinuities and lateral variations of seismic

facies, both horizontally and vertically. Thereby, according to Bulhdes and de Amorim (2005),



54

this attribute can highlight lithologies such as low and high velocities sand, conglomerates,

volcanic, intrusive, shale generators and carbonates.

For instance, in Brazil, Oreiro et al. (2008) used this technique to study igneous rocks
and dikes at surroundings areas of Santos and Campos Basins, and Costa et al. (2016) also used it
to indicate dikes and sills from seismic discontinuites of Serra Geral, Parand Basin. Furthermore,
Ferro (2018) used to analyze the existing salt tectonics and its influence on the type of trapping

associated with hydrocarbon reservoirs in the south-central portion of the Espirito Santo Basin.

Another example, outside Brazil, Vernego and Trinchero (2015) obtained good
responses in the identification of fault systems and intrusive bodies in seismic data from Golfo San
Jorge Basin, Argentina, when applying Amplitude Volume technique. This is a region known for

an unconventional reservoir of shale gas.

Therefore, in the context of this work, as the BSRs are seismic features that have a
high impedance contrast, this attribute can be useful in highlighting the BSR. In addition, as seen
in the previous chapter (Chapter 3), the study area is a tectonically active zone, with several faults,
where gases migrate to the subsurface through these. So, this attribute would be ideal to highlight

this fault system.

4.3.4 Relative acoustic impedance
Whereas Amplitude VVolume Technique transforms a cosine wave into a sine wave by
Hilbert Transform (Figure 4.6), Relative Acoustic Impedance (RAI) transforms it by an integration
(Equation 4; Taner, 2001).The phase of the seismic wavelet must be zero for RAI (Barnes, 2016).

t=T

In(pv) =2 f(T)dt 4)

t=0

It acts like a recursive inversion, which rotates the phase of the trace by 90 degrees

and boosts low frequencies with respect to high frequencies (Barnes, 2016). So, it records
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differences in acoustic impedance from a background trend and is employed primarily as a relative
measure of porosity (Barnes, 2016) and for extracting meaningful interpretation from seismic data
(Chopra et al., 2009).

Thus, this attribute helps in the identification of seismic facies. Therefore, as there are
blanking zones in our study area caused by the presence of gas, this attribute would be good for
highlighting these off reflectors. For example, Emujakpurue and Enyenihi (2020) used this
attribute to identify hydrocarbons from Akos field, Niger Delta, Nigeria. Besides that, de Matos et
al. (2014) applied this attribute in 3D seismic data from the Campos Basin, Brazil.

4.3.5 Spectral Decomposition

Spectral Decomposition consists of the transformation of the seismic data in the
frequency domain (Partyka et al., 1999). This process can be done through some techniques, such
as Short-Window Discrete Fourier Transform (SWDFT), Continuous Wavelet Transform (CWT),
Complete Ensemble Empirical Mode Decomposition (CEEMD) and Matching Pursuit (Lin et al.,
2013; Honorio et al., 2017). For time data, the analysis window will be in seconds, so the spectral
components will be measured in cycles / s or Hertz. Whereas analyzing in-depth seismic data,
spectral components will be measured in cycles / km. Thus, greater attention will have to be paid
when uploading data to commercial software, as SEGY files are stored in a microsecond sample
interval (Lin et al., 2013).

This seismic attribute is based on the mathematical concept of the Fourier technique,
in which any waveform can be decomposed into a series of sine (or cosine) waves whose
frequencies are integer multiples of the basic repetition frequency 1/T (Figure 4.7). A periodic
waveform can be expressed in two distinct domains: time domain and frequency domain. The time
domain expresses the wave amplitude as a function of time, whereas the frequency domain
expresses the amplitude and phase of its constituent sine waves as a function of frequency.
Frequency spectra (line spectra) are known for a series of discrete amplitude values and wave
phase components for preset frequency values, distributed between 0 Hz and the Nyquist

frequency (Kearey, 2002).
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Figure 4.7. Thin-bed spectral imaging (Partyka et al., 1999).

This attribute is useful to extract detailed stratigraphic patterns with thickness related
to dominant frequencies processed with seismic (Laughling et al., 2002). As seen in Figure 4.8,
depending on the chosen frequency for the Spectral Decomposition, you can highlight thinner and

thicker reflectors. In this way, this seismic attribute is good for highlighting a specific objective of

Figure 4.8. Thin-bed interference. On the left, an example of thin reservoir with varying thickness seismic data.
On the middle, seismic data with higher dominant frequency, which would highlight the thinner parts of the
reservoir on amplitude maps. While on the right, seismic data with a lower dominant frequency that would
highlight the thicker parts on an amplitude map (Laughlin et al., 2002).

a seismic interpreter.

Therefore, this attribute can be used to highlight the contrasts of seismic attenuation in

gas hydrates and free gas zone reservoir. There are many studies that have used this seismic
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attribute to identify BSRs associated with gas hydrates. For instance, Santos et al. (2009) used
spectral decomposition to estimate hydrate bearing sediments at Joetsu Knoll, in Joetsu Basin,
Japan. Besides that, in Brazil, de Oliveira (2009) applied this attributes in Pelotas Basin — RS and
Aguiar (2020) in Foz do Amazonas —AM both to highlight the BSRs in seismic profiles.

4.3.6 Instantaneous Frequency
This is a complex trace attribute defined (Figure 4.9 d) as the derivative of

instantaneous phase ((Figure 4.9 c) at time, dy(t)/f(t), in degrees/ms or radians/ms (Chen and
Sidney, 1997).

A V/\V = -«x{vﬂ T

A N e
JANIAN .UU i

Figure 4.9. (a) Real seismic trace. (b) quadrature. (c) phase. (d) instantaneous frequency, and weighted average
frequency (Taner et al., 1979).

This attribute is useful for stratigraphy discontinuity, used for estimation of seismic
attenuation caused by hydrocarbons (oil and gas) reservoirs that causes drop-off high frequency
components (Chen and Sidney, 1997), so identifying abnormal attenuation and thin-bed tuning
(Chopra and Marfurt, 2007). Besides that, according to Taner (2001), it is also useful as fracture

zone indicator, since fractures may appear as lower frequency zones.
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For instance, Okui et al. (2008) also applied this seismic attribute to identify the porous
sandstone reservoir corresponding to the Shiya Formation, Umitaka Spur, Joetsu Basin, Japan.
Besides that, Barros (2009) applied this to identify the BSR in seismic profiles of Pelotas —RS,

Brazil. Thus, it would be interesting to apply this attribute to identify the seismic attenuation of
the free gas zone present in Umitaka Spur, Joetsu Basin.



59

Chapter 5 MATERIALS AND METHODS

The material of this study consists of the 2D marine seismic profiles provided by the
Japan Agency for Marine-Earth Science and Technology (JAMSTEC). JAMSTEC made the
marine seismic acquisition (subchapter 5.1) over Umitaka Spur (subchapter 5.2) and processed the
data (subchapter5.3).

The main goal of this work was to identify the Bottom Simulating Reflectors (BSRs),
which correspond seismically to the Base of the Gas Hydrates Stability Zone (BGHSZ) of the
Umitaka Spur. However, due to the complex geology of the study area, it was necessary apply six
seismic attributes to help with interpretation. For this, was used the Schlumberger Petrel 2019
license available to Universidade Federal Fluminense (UFF). The steps of this methodology are

explained in detail in the subchapter 5.4.

5.1 Single Channel Seismic (SCS) acquisition

On September 28 to October 16, 2007 (NT07-20 Expedition) and on April 29 to May
21, 2008 (NT08-09 Expedition), a 2D single channel seismic (SCS) survey was conducted by the
R/V Natsushima of the JAMSTEC in the Joetsu Basin. The source of both acquisition systems
consisted of two Bolt air guns, with a volume of 40 cubic inches in each and they were operated
simultaneously at a pressure of 14 MPa (Freire, 2010). They were deployed at 30 m behind the
ship with depths ranging from 1.5 to 7.4 m owing to the sea water wave movement (Freire et al.,
2011). The receiver of both acquisitions consisted of a short streamer (SIG type) with 48
hydrophones equally spaced at 1 m. It was also attached to the ship (at a distance of 166.5 m) and
at a minimum offset of 136.5 m from the source (Figure 5.1).
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Figure 5.1. 2D Single Channel Seismic (SCS) offset of the (A) NT07-20 Expedition (JAMSTEC, 2007). (B) NT08-
09 Expedition (JAMSTEC, 2008).

The ship was sailing at a speed of 3.1 knots and shots were being fired every 5 s, which
corresponds to an average shot spacing of 8.3 m, as reported by Freire et al. (2011). The recording
time of seismogram was 4.0 s with 1 ms sampling, according to Freire (2010). Hence, as the

sampling rate is 1 ms, the Nyquist frequency is equivalent to 500 Hz. Thus, to avoid an aliasing,
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frequencies above 500 Hz must be removed from the seismic data from both Expeditions in the

seismic processing step (subchapter 5.3) by the JAMSTEC.

5.2 SCS survey

The SCS survey covered an area of 77 km? of the Umitaka Spur and surrounding areas
(Freire, 2010; Freire et al., 2011). Twenty five dip profiles were shot across the spur from west to
east, about 7 km in length each. For the purpose of studying the stratigraphy and structure of the
anticline and to identify accumulations of free gas and gas hydrates, these dip lines were obtained
in an average spacing of 0.4 km. Besides that, a total of four strike and semi-strike profiles were
made in this survey, approximately 15 km in length each run parallel to the anticline axis of the
spur. These strike seismic lines establish relationship between gas chimney structures, seep site
mounds and pockmarks. Moreover, they determine the link between the two wells, METI Sado
Nansei-oki Shallow and Deep, as reported by Freire (2010) and Freire et al. (2011).
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Figure 5.2. 2D SCS location map of the Umitaka Spur. These seismic lines were obtained from both NT07-20 and
NTO08-09 Expeditions. Stars indicate plume/seep locations. Open circles indicate carbon isotope analyses of sediments
(Freire, 2010).
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5.3 SCS processing by JAMSTEC

These acquired data was processed by the Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) in eight main steps (Figure 5.3). The first step consisted of pre-
processing, which were done the visualization of seismic raw data and the edition of seismic traces
to eliminate damaged traces. Then, a static correction was done to compensate the system delay.
In the third step, a band pass filter with frequency limits of 25-30-360-400 Hz was done to
eliminate undesired low frequency oscillation and spurious signals greater than the Nyquist
frequency of 500 Hz, as reported by Freire et al. (2011).

In the fourth stage, a spherical divergence correction was applied in time domain to
the seismic reflection data to eliminate the amplitude reduction resulting from the wavefront
expansion. Subsequently, a predictive deconvolution was performed, with a prediction distance of
6 ms and an operator length of 150 ms, which increased trace frequency content (Freire, 2010;
Freire et al., 2011).

Finally, in the six and seven steps, a frequency-wave number migration (Stolt
Migration) for constant common offset gathers was carried out with a constant velocity of 1500
m/s. Hence, the migration with this velocity increased section quality at shallow depths, but was
not appropriate for deeper horizons because they have higher velocities. After migration, with the
intention of removing migration artifacts above the seafloor, the section was muted over the sea

bottom, as reported by Freire et al. (2011).
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5.4 Methodology

The main steps of this work are illustrated in Figure 5.4. The work chief objective is
to identify the Base of the Gas Hydrates Stability Zone (BGHSZ) of the Umitaka Spur, which is
the fifth and final step. For this, it is necessary to identify the true BSRs. However, as the geology
of the study area is complex, it was required to apply the seismic attributes to enhance the BSRs,

which was the main methodology of this work.

1 — Import of seismic profiles 4 — SEISMIC ATTRIBUTES
APPLICATION

2 — Quality Control 4.1 — Envelope

3 — Identification of BSRs without 4.2 — RMS Amplitude

the application of seismic
attributes 4.3 — Amplitude Volume Technique

4.4 — Relative Acoustic Impedance

Trammels: Complex Geological

framework o
4.5 — Spectral Decomposition

5 — Final Interpretation of BSRs 4.6 — Instantaneous Frequency

Figure 5.4. Main Work Steps.

First, all of the 2D post-stack seismic lines on time domain (SEG-Y format) provided
and already migrated by the JAMSTEC (subchapter 5.3) were loaded into the Petrel 2019 software
(Figure 5.5). Then, a quality control of these seismic profiles was carried out, so only a seismic
line was discarded because it was well curved, which was SP.2(4_FSP) from the 2007 acquisition
(NTQ7-20 Expedition). Thus the seismic lines used in this work became twenty eight in total and
the final number of them corresponds to the final number of the lines in Figure 5.2. For example,
the SP.1(ut-4) seismic line from NTO08-09 Expedition corresponds to US-04 in Figure 5.2.
Therefore, a grid of the seafloor was done through the interpretations of the seafloor horizon of

these twenty eight seismic profiles (Figure 5.6).
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Figure 5.5. On the left, the table with the seismic lines of the NT07-20 and NT08-09 Expeditions. On the right, the
seismic lines of the NT07-20 (blue lines) and NT08-09 (green lines) loaded into the Petrel. The seismic line
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Figure 5.6. 2D SCS profiles and the grid of the seafloor. The color scale refers to the Elevation time (ms) of the
seafloor grid. So, the deepest zones (longest times, close to 1600 ms TWT) are in purple while the shallowest zones
(shortest times, close to 950 ms TWT) are in warmest colors.

Secondly, the possible Bottom Simulating Reflectors (BSRs) of the seismic profiles
were identified near the seafloor without any application of seismic attributes (Figure 5.7).
However, as reported by Matsumoto et al. (2011b) the BSRs are generally weak, discontinuous

and patchy in this region (Chapter 3), which makes it difficult to interpret those seismic horizons.
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Figure 5.7. The seafloor grid generated in Petrel. Below it are plotted the interpreted BSRs of each seismic line without
the aid of the application of seismic attributes. The color scale refers to the Elevation time (ms) of the BSRs. Thus,
the longer the time, the greater the depth. Red colors correspond to shallow zones (close to 1400 ms TWT), while

purple colors represent deeper zones (close to 1625 ms TWT).

In addition, another factor that hinders the visualization of these reflectors is the
complex geological framework of the study area. As seen previously (Chapter 3), this region is
tectonically active (Taira, 2001) and is full of geological faults, which intersect these reflectors
and whereby the methane gas migrates vertically from deep sources and laterally from carrier beds
causing an acoustic transparency (Freire et al., 2011). Furthermore, in some seismic sections there
are hyperboles that were not collapsed during the migration step of the seismic processing carried
out by JAMSTEC, which are mainly present in these fault regions of the Central part of the
Umitaka anticline. For instance, in Figure 5.8 we can see diffractions associated with fault zones
and blanking zones in the SP.2(19_FSP) seismic line. So, makes it difficult to see the continuity
of the BSR.

Moreover, more than one seismic reflector with reverse polarity in relation to the
seafloor reflector, being parallel to it was also found. As seen in the subchapter 2.3, there is a
geophysical ambiguity, which can make the interpreter confuse the BSR (BGHSZ) with another
negative physical anomaly in the shallower areas, above the BGHSZ. Hence, without the aid of a
seismic attribute, it becomes very difficult for an interpreter to characterize the real BSRs without

making mistakes.
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Figure 5.8. 2D Single Channel Seismic Line SP.2(19_FSP) from NT07-20 Expedition.

5.4.1 Seismic Attribute Application
Therefore, in order to highlight the real BSR of each seismic section in this complex
framework, the seismic attributes were used. They were applied through the “Volume Attributes”
command of the Petrel software in the seismic interpretation tab. Moreover, to make the analysis
of amplitude values and frequency spectra, the commands “Extract Value” and “Open Spectral

Analysis Tool” were used in the Petrel, respectively.

The Envelope was used to highlight amplitude anomalies. After, the Amplitude RMS,
which has a similar function, was used as a part of the generation stage of the Amplitude Volume
Technique (AVT).

Then, aimed to highlight the high impedance contrasts and the faults of the seismic
data, the AVT was applied. To apply the AVT seismic attribute, the Root Mean Square attribute
was first applied to all the seismic sections. The window length was 3 ms, which was the smallest
window option. This frequency window was used because the smaller the chosen window, the
better resolution (Vernengo and Trinchero, 2015). After, was done a rotation of the zero phase to
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-90° in the seismic profile with the RMS amplitude seismic attribute already applied. Thus, the
seismic section with the AVT applied was obtained. Thereby, in the Petrel 2019 software, this
technique consists of applying two volume attributes: RMS amplitude and a Phase Shift of -90° in
the RMS Amplitude.

The Relative Acoustic Impedance (RAI) is driven by geological assumptions and was
applied to enhance thin layers below the tuning thickness (Chopra et al., 2009). After the
application of these two geological attributes (AVT and RAI), the two frequency attributes were

applied to measure seismic attenuation in seismic profiles.

Before applying these attributes, an analysis of the frequency spectrum was made to
obtain information on the frequency domain in each seismic profile. Thus, an area of interest was
chosen for each seismic profile. Therefore, a spectral analysis was made only of the components

of this zone, to find out what is the dominant frequency of this unconventional reservoir system.

In Petrel, the Spectral Decomposition (SD) was done using the volume attribute
“Generalized Spectral Decomposition”, which is called this way because it has the option of using
more than one type of transform according to the parameter selected by the interpreter. As the
spectral decomposition in practice comes down to highlighting a certain central frequency of the
seismic data through a transform, which in this case was the Continuous Wavelet Transform, for
this evaluation six different central frequencies were applied, with a fundamental frequency of 25
Hz. Part of the methodology is explained in more detail in the next chapter (subchapter 6.1.6). For
example, the dominant frequency in the SP.2(19_FSP) seismic section data was 100 Hz. Then,
with a fundamental frequency of 25 Hz, six distinct spectral decompositions were applied: 25; 50;
75; 100; 125; 150 Hz, respectively. Ultimately, the instantaneous frequency attribute was applied
to estimate the free gas zone because it causes drop-off high frequency components below the

BSR, due to the seismic attenuation properties of the methane gas.
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Chapter 6 RESULTS AND DISCUSSION

In this work, the six seismic attributes were applied to each seismic section, twenty
eight seismic profiles in total, and the BSRs of each section were interpreted. Besides that, as it is
known from previous studies that BGHSZ occurs at around 115 mbsf (Matsumoto et al., 2009,
2011a,b, 2017a,b), the focus of this work was the seismic quality of the shallower zone,

corresponding to the Haizume Formation of the Late Quaternary.

Due to the vast number of seismic lines, only two lines were selected for this
discussion, SP.2(19_FSP) and the strike line SP.2(51-1_FSP) from NTO07-20 Expedition (Figure
6.1), which correspond with the seismic sections US-19 and US-51 in Figure 5.2, respectively. In
this chapter, the results of the application of the six seismic attributes will be addressed, where a
discussion will be made according to the collaboration of these previous works, covered in Chapter
3. The other seismic profiles and their respective results of the application of the seismic attributes

are found in Appendix.



72

NTO07-20 SCS Post plot of all lines
137°52' 137°56' 138°00' 138°04'

37°40' | 37°40'

37°3¢' 7 37°36'

37°32' |

\\\.
Q:
=
h\—
\
= 1oy s
e R_, 37°32
1 1100
B

37°28" 3728
Qv,-/mn_
= )
110 g
= .
}””szn_ ]
3724 ff——= = Sy
: m A (S
- o
f (0 5 =
137°52 137°56" 138700 13804
[ SN S— | e ——
L |
0 500 1000 1500 2000

Figure 6.1. The 2D Single Channel Seismic (SCS) survey of NT07-20 Expedition from Joetsu Knoll and Umitaka
Spur, Joetsu Basin, Japan (JAMSTEC, 2007).

This sorting was carried out according to the most interesting seismic features, such as
pockmarks, Bottom Simulating Reflectors (BSRs) and even, flat spot in US-19, based on the work
of Freire et al. (2011). For instance, note in that interpretation (Error! Reference source not
found.) that exists two types of methane gas migration, vertical, where the flow is greater and
coming from the depths, whereas laterally through the carrier beds the flow is less intense.

However, realize that you cannot infer this just by viewing the SCS US-19 (Figure 6.2a).
Therefore, it is important to apply seismic attributes.
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Furthermore, according to geochemical analysis of the area, there are two different
sources of methane gas area (Matsumoto et al., 2005, 2009; Freire, 2010; Freire et al., 2011). As
reported by Bernard et al. (1976 in Kvenvolden, 1993), thermogenic gas has an isotopic carbon 13
signature greater than -60%, while biogenic has a signature less than -60%, (subchapter 2.1). Thus,
we can see in Figure 6.2 by the seafloor mud gas analysis that the gas hydrate is thermogenic in
the central part of the pockmark where there is an intense flow of gas from the depths through the

faults, while biogenic at the edges of the anticline.

Besides that, note that in the right corner of US-19, between approximately 1.5 and 1.8
seconds two way travel (TWT), there are two different and important interfaces (BSR and flat
spot). Thus, this will be the area of interest for this discussion on the application of seismic

attributes in the US-19 seismic line.
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Figure 6.2. (a) US-19 seismic profile (b) Model for gas hydrate occurrence and main features of the Umitaka Spur

gas hydrate/free gas system. Number at the top indicates where the US-51 strike SCS line roughly cross the US-19
dip SCS line (Modified from Freire et al., 2011).

The US-51 section was also chosen because it intersects through all seismic sections

and there are also several pockmarks associated with the gas chimney (Figure 6.3).
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Figure 6.3. (a) non-interpreted and (b) interpreted images of the near-strike SCS section US-51. Note mounds and
pockmarks (depressions) at the seafloor in the central part of the spur, where fracturing is greater. Stars indicate
plume/seep locations. Numbers at the top show where the dip SCS lines cross the strike SCS line. METI Deep and
Shallow wells are project (Modified from Freire et al., 2011).

6.1 Seismic Attributes Analysis

As seen in subchapter 2.3, the criterion for identifying a BSR is to recognize a reflect
with a reverse polarity parallel to the seafloor reflector, which often crosscut the bedding plane

or
of

the host sediments. They are phase reversal reflectors due to the negative impedance-contrast that

marks the hydrate/free gas phase boundary, high amplitude seismic event, which mimics the

seafloor reflector (Hornbach et al., 2003). Thus, if the seafloor reflector is represented as black

(positive) reflector in these seismic profiles, the BSR in this convention will be characterized by a

bright spot (strong white reflector), for instance. However, in these seismic profiles they aren’t so

oblique to bedding planes, they are most often parallel to the layers, and there are more than one
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reflector similar to BSR, so the application of seismic attributes is fundamental to highlight the
true BSR.

6.1.1 Envelope
The Amplitude Envelope represents total instantaneous energy and because it is
sensitive to changes in acoustic impedance, it highlights the high contrasts of acoustic impedance
of the seismic signal. It varies approximately between zero and the maximum amplitude value of

the trace.

Note in Figure 6.4 that it highlighted the strong impedance contrasts of the interfaces
corresponding to the seafloor and BSR of the US-51 strike-line, corresponding to the highest
amplitude values (blue colors). Thus, the BGHSZ corresponds to the blue horizon approximately
in 1500 ms. This is in line with data from previous studies, where the BSR is this region is
approximately 115 mbsf. Besides that, notice the vertical red spots intersecting white areas, they
might be the results of the gas migration pathways along faults, fractures and carrier beds.

However, also note that if we don’t have the information of the BSR region from
previous studies, we couldn’t exactly say that BGHSZ is in 115 mbsf due to ambiguity of other
reflectors that were also highlighted with the application of the Envelope. For instance, note that
when comparing with Figure 6.4, we notice that there is a strong energy on the erosive surface of
the Debris Flow between H-VI and H-V, and that the H-11 horizon could also be a BSR.

Nevertheless, regarding the H-II horizon being a BSR or “Paleo BSR”, in my opinion
these hypotheses are discarded. Based on previous studies, we know that BGHSZ is approximately
115 mbsf (Matsumoto et al., 2009; 2011a,b; 2017a,b; Freire, 2010). For instance, Freire et al.
(2011) interpreted the BSR close to the H-I11 horizon in the US-51 seismic section (Figure 6.3).
Thus, the BSR is close to the H-I11 reflector and not to the H-I1.

Besides that, I don’t believe that the anomaly highlighted in the black rectangle near
the H-11 horizon is a Paleo BSR (Figure 6.4). As seen in subchapter 2.3, BSR is a seismic reflector
that represents the interface between impedance differences (the hydrates and free gas phase
boundary, which seismically marks the BGHSZ. Thus, in my opinion, if BGHSZ instability occurs,
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this phenomenon will cease and consequently the high impedance contrast will also disappear. |
do not believe in former BSRs, sometimes they can remain scars, related to the diagenetic process,

but without regional character.

Zooming in on the US-19's area of interest, we can also see that this attribute does not
serve to distinguish a BSR from a flat spot and the H-1 and H-II horizons (Figure 6.5), because it
highlights all the high amplitude anomalies. Hence, it is not good to differentiate a BSR from

another reflector with a high amplitude anomaly.
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Figure 6.4. US-51 without (A) and with Envelope Amplitude (B).

78



Figure 6.5. US-19 without (A) and with Envelope Amplitude (B).
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Furthermore, for example, if we extract the amplitude values with the Petrel “Extract
Value” command, we will see that both the H-II horizon and the BSR have high negative
amplitudes (Table 3). Thus, the envelope attribute is not so useful in distinguishing a true from a
false BSR. Therefore, it is not recommended to use only this attribute to reach a final conclusion.

Table 3
Seismic amplitudes of the seafloor, H-11 horizon (Haizume Formation) and BSR from 2D SCS US-19 profile
Trace Number| Seafloor H-II BSR

314 14228.88| -10339.99 |-22070.32
313 14510.95| -9220.52 |-30020.16
312 17056.59| -16435.85 |-17994.60
311 16665.69| -25086.44 |-23654.47
310 12946.41| -31102.40 |-34190.47
309 16597.57| -32079.30 |-31590.57
308 18154.07| -27075.16 |-21704.91
307 18056.42| -24819.03 |-12596.83
306 9822.05 | -16012.96 | -5092.01
305 3805.52 | -14316.16 | -7302.52

6.1.2 RMS Amplitude

In addition to this attribute being used to generate the Amplitude VVolume Technique
attribute, as well as the Envelope, it is useful to highlight extreme amplitude anomalies. Note in
Figure 6.6, what was mentioned about the importance of choosing the window length (5.4.1). The
smaller the chosen window, the better resolution. Then, the seismic image generated with a 3 ms

window length is greater sharpness than with a 9 ms window length.

Thereby, to apply the AVT, only the 3 ms window length was used.
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Figure 6.6. US-19 with RMS Amplitude applied. (A) 9 ms window length (B) 3 ms window length.
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6.1.3 Amplitude VVolume Technique
Then, after applying a phase shift of -90°in the seismic image with a RMS Amplitude
(Figure 6.6 B), we obtained Figure 6.7. Note that this attribute highlighted the structures very well,
both the faults and the interface associated with BSR. Then, it is possible to view the stretches of

BSRs that were previously weak and to interconnect them.

Figure 6.7. (A) non-interpreted (B) interpreted seismic images of the SCS section US-19 with Amplitude Volume
Technique.
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Moreover, note the pseudo-relief effect of this attribute that gives a sensation of a 3D

seismic image, where the gaps are related to the gas chimneys (Figure 6.8). Then, it is great to

interpret fault system.
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Figure 6.8. US-51 Complex fractures viewed with AVT.

6.1.4 Relative Acoustic Impedance
This attribute made the weak BSRs more striking and it also reduced the acoustic

transparency (blanking) of regions where gas is possibly present, such as gas chimneys.
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Figure 6.9. US-19 without (A) and with Relative Acoustic Impedance (B). Note that from (A) to (B)
there was an enhancement of all reflectors.

Thereby, there was a gain in the image, so the areas that were previously blind due to
the blanking effect were more visible with the application of the seismic attribute. In this way, the
seismic reflectors became stronger and clearer. However, there is a drawback in this general gain,
such as highlighting the noises (Figure 6.10 A). Notice in the purple circle that the diffractions in
the fault zones have been highlighted. The zone interpreted in yellow shows the debris flow and

the flat spot represents the gas zone with high water saturation.



Figure 6.10. US-19 with RAI. (A) diffractions highlighted. BSR plus flat spot in the debris flow.

Besides that, this attribute also did not serve to distinguish the active BSR from the H-
Il horizon. Therefore, we have to measure the frequency to do this discrimination by analyzing the

seismic attenuation.

6.1.5 Spectral Analysis
Before applying the seismic frequency attributes, it is good to check the dominant
frequencies of the seismic data for a better understanding of the dynamics involved. Then, first the
visualization of the Power (dB) of the Frequencies (Hz) of the entire seismic line US-19 was made
(Figure 6.11).



86

Power (dB)

Frequency (Hz)

Figure 6.11. Spectral Analysis of the entire SCS section US-19.

Note from graph in Figure 6.11 that the most dominant frequencies of the seismic data
are in the peaks between 80 and 100 Hz, which makes sense, as the 2D SCS is a high resolution
seismic. Besides that, note that the higher frequencies are less dominant, because as seen in
subchapter 5.3, during the seismic processing a band pass filter of 25-30-360-400 Hz was applied.
Furthermore, due to physical properties, the tendency is for higher frequencies to be attenuated
more quickly than the lower ones. So, the seismic data is correct as expected.

6.1.6 Spectral Decomposition
Before applying Spectral Decomposition, a spectral analysis was also performed
(Figure 6.12). However, this analysis was more thorough, it was done only in the chosen area of

interest, which corresponds to the area where we have the BSR and the flat spot (Figure 6.10).
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Figure 6.12. US-19 chosen area of interest (a) and its frequency analysis (b).

Thus, in order to know which central frequencies to choose for the application of the
spectral decomposition, a zoom was made in the region where there is a greater concentration of

peaks in the power versus frequency graph (Figure 6.12b). Then, it is observed that the frequency

of 100 Hz is the most dominant of this zone of interest (Figure 6.13).
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Figure 6.13. Dominant Frequencies in the selected US-19 area.
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As seen in subchapter 4.3.5, Spectral Decomposition serves to highlight a certain
frequency of the seismic data. Since the higher frequencies are attenuated more quickly than the
lower, a zone of free gas would attenuate all of these high frequencies, for instance. That way, the

lowest frequencies would remain in the free gas zones.

Therefore, based on this theory, the ideal is to choose a lower frequency to highlight
the free gas zone. Whereas to highlight the presence of gas hydrates above the BGHSZ, it would
be better to use a higher frequency. As the frequency of 100 Hz is the most dominant in the seismic
data, it will probably be the best one to see the seismic reflectors. Thus, from it five other
frequencies were chosen to analyze the effects of these different spectral decompositions in the
US-19 seismic section with a fundamental frequency of 25 Hz. Then, six spectral decompositions
were applied with a central frequency of: 25, 50, 75, 100, 125 and 150 Hz (Figure 6.14).
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Figure 6.14. Spectral Decomposition of US-19 with (A) 25 Hz (B) 50 Hz (C) 75 Hz (D) 100 Hz (E) 125 Hz (F) 150
Hz.

Incredibly, all images are on the same scale (Figure 6.14, A-F). Apparently, it seems
that the image corresponding to the SD with a frequency of 25 Hz is with a greater zoom, because
the seismic reflectors are thicker. This is due to thin bed interference. As reported by Laughlin et
al. (2002), in thin reservoirs a lower dominant frequency would highlight the thicker parts on an
amplitude map and this is what happened when choosing a central frequency of 25 Hz. While
seismic data with a higher dominant frequency highlight the thinner parts of the reservoir on
amplitude maps, as seen in Figure 6.14 E-F. Thereby, from A to F, we have the illusion that the
scale is increasing, while in fact it is the same, what changed was the frequency parameters of the

Spectral Decomposition.
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Note that the most balanced result obtained for the interpretation of the reflectors, was
the frequency of 100 Hz (Figure 6.14). As was the case with the US-51 frequency analysis (Figure

6.15), but it will not be covered in detail here.

Figure 6.15. SCS US-51 with Spectral Decomposition with a central frequency of 100 Hz.

6.1.7 Spectral Decomposition plus Envelope
Thus, the envelope attribute was applied to highlight the energies after the application
of spectral decomposition. So, in this way, highlight the BSR, which is the boundary between the
free gas zone and the gas hydrates stability zone (Figure 6.16).

Seafloor

Free Gas Zone
* Greater seismic attenuation

Figure 6.16. Theoretical scheme showing the highest seismic attenuation below the BSR.
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Thus, applying the Envelope to the Spectral Decompositions (Figure 6.14) of section
US-19, Figure 6.17 was obtained.

TWT (ms)

TWT (ms) =t

Figure 6.17. Spectral Decomposition plus Envelope of US-19 with (A) 25 Hz (B) 50 Hz (C) 75 Hz (D) 100 Hz (E)
125 Hz (F) 150 Hz.

Note in the figure above (Figure 6.17), that the Spectral Decomposition plus Envelope
with the lowest central frequency (25 Hz) highlighted more the regions where there is a greater
seismic attenuation, leaving huge red spots below the BSR. While with the higher frequencies,
there was a greater thinning of the layers, better highlighting the BSR and the strong horizons
above it (H-1 and H-2 of the Haizume Formation). The BSR is clearer in Figure 6.17 D, where it
is in the red zone between 1.4 and 1.6 seconds TWT.

Thus, also applying the envelope seismic attribute on the spectral decomposition with
a central frequency of 100 Hz, we obtain this result (Figure 6.18) from section US-51.
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Figure 6.18. SCS section 51 Spectral Decomposition with a central frequency of 100 Hz plus Envelope.

Therefore, note that the combination of these two attributes served to highlight the
BSR. However, it is observed that the distinction between the true BSR and the strong anomaly of
the H-11 horizon can only be made due to the bibliographic references of the region and due to the
previous attributes application, such as AVT, which highlighted the BSR from H-IIl and H-11

reflectors. Thus, use only spectral decomposition is not enough to reduce geophysical ambiguity.

6.1.8 Instantaneous Frequency
Ultimately, the Instantaneous Frequency seismic attribute was applied. Note that in the
image generated after applying this attribute in the US-51 seismic section, there is a greater
dominance of the lower frequencies in the deeper areas (Figure 6.19). In this color scale used, the
red spots correspond to 0 Hz. Thus, a greater seismic attenuation is observed in the zones below
1.7 seconds TWT, approximately 0.5 TWT bsf and they should be free gas accumulation from

deep sources.
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Figure 6.19. SCS section 51 with instantaneous frequency attribute. Red, yellow and green spots represent frequency
values close to 0 Hz, 50 Hz and 100 Hz, respectively. While purple spots represent frequency values approximately
greater than 200 Hz (higher frequency values).

Besides that, the zones with yellow and green spots are also areas in which there is an
anomalous attenuation of the seismic signal. Hence, they represent areas of free gas migration-
accumulation. While blue and purple spots represent regions with less seismic attenuation. So,
since the gas hydrates only exist in the Gas Hydrate Stability Zone (GHSZ), only the purple and
blue spots above the BSR (less than 1.6 s TWT) can mean their presence in the sediments. While
the other purple and blue zones below the BSR should represent compacted sediments. Thus,
considering these observations and zooming in on the shallow central part, the interpretations of

Figure 6.20 can be made. Note that gas hydrates should serve as a seal fort the free gas zone.

In addition, also note the unusual presence of high gas concentration in gas chimney
structures above BSR (yellow spots in Figure 6.20). This result matches the abnormally low
acoustic velocities observed above BSR in previous work. For instance, as seen in subchapter 3.4,
Saeki et al. (2009) through a velocity analysis of 3D seismic survey data reported anomalously
low velocities (1200-1300 m/s) above the BSR horizon, possible affected by the presence of free-
gas bubbles (Matsumoto et al., 2009, 2011b; Freire, 2010). These low velocities were also
observed in the well data (Figure 2.12b) by Matsumoto et al. (2017a,b).
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Figure 6.20. Gas hydrate sealing effect in US-51 seismic profile with instantaneous frequency attribute. Red, yellow
and green spots represent frequency values close to 0 Hz, 50 Hz and 100 Hz, respectively. While purple spots
represent frequency values approximately greater than 200 Hz (higher frequency values).

Besides that, comparing the seismic interpretation of US-19 (Figure 6.2) from Freire
et al. (2011) with the result obtained after applying the IF (Figure 6.21) is possible to relate the
seismic attenuation with the presence of gas, which migrates vertically through the faults and
laterally through the carrier beds (Freire et al, 2011). Note the red spots between 2.0 s and 2.4 s
TWT, corresponding to the lowest frequencies values (Figure 6.21). They may occur due to the
high flow of methane from deep sources, which migrates vertically through the faults (Figure
6.22). This is probably the source of the thermogenic gas hydrates found on the surface in the
pockmark, reported by geochemical studies (e.g., Matsumoto et al., 2005, 2009, 2011a,b, 2017a,b;
Freire, 2010; Freire et al., 2011). As seen in Chapter 3, a numerous gas venting sites have been
observed in Umitaka Spur (Figure 3.6, Figure 3.7 and Figure 5.2) and through the geochemical
analysis of the carbon isotope ratio, the origin of these methane were identified (Okui et al., 2008;
Freire, 2010; Matsumoto et al., 2011b).
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2400

Figure 6.21. SCS section US-19 with instantaneous frequency attribute. Red, yellow and green spots represent
frequency values close to 0 Hz, 50 Hz and 100 Hz, respectively. While purple spots represent frequency values
approximately greater than 175 Hz (higher frequency values).

In addition, note the relationship between the yellow and green spots regions and the
blanking zones observed previously (Figure 6.9 A). So, the origin of blanking in gas chimney is a
consequence of the presence of gases that attenuate the signal, generating this acoustic
transparency. As reported by Matsumoto et al. (2017a), there is a shadow effect caused by the

existence of energy absorptive free gases within gas chimneys in Umitaka Spur.
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Figure 6.22. SCS section US-19 with instantaneous frequency attribute. The arrows show the flow of methane.
Rectangle (A) highlights the contrast of seismic attenuation between purple and yellow spots. Red, yellow and green
spots represent frequency values close to 0 Hz, 50 Hz and 100 Hz, respectively. While purple spots represent
frequency values approximately greater than 175 Hz.

Besides that, also note that the rectangle A highlights a large contrast of seismic
attenuation (Figure 6.22). Note that there is a greater attenuation of the seismic signal (yellow spot)
below, while a lesser attenuation just above (purple spot). By zooming in on the zone of interest
(Figure 6.23), we can attribute this greater attenuation to the free gas zone (yellow spot), which is
just below the BSR corresponding to the BGHSZ. Thus, these purple spots above should be
hydrates filled in fractures of sediments sealing the free gas zone.
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Figure 6.23. SCS section US-19 with instantaneous frequency attribute. Yellow and green spots represent frequency
values close to 50 Hz and 100 Hz, respectively. While purple spots represent frequency values approximately greater

than 175 Hz. This could possibly mean gas hydrate at the Base of the Gas Hydrate Stability Zona (BGHSZ) serving
as a seal for the free gas zone.

Moreover, it is important to highlight the sedimentary heterogeneity involved in the
region, which may also explain these different color patches. For instance, coincidence of
accumulations zones of hydrate with Methane Derived Authigenic Carbonates (MDACSs) were
observed in Umitaka. Based on Matsumoto et al. (2017), this coincidence may imply cogenetic
relation, so enhanced methane flux caused carbonate precipitation while also leading to hydrate
accumulation.

Furthermore, instantaneous frequency attribute served to highlight the possible
hydrates blocks below the pockmark (purple spots). This is important for that question about the
relationship between Last Glacial Maximum (LGM), sea level fall, massive dissociation of
methane hydrates and pockmarks formation (Figure 6.24), that was covered in the subchapters 2.3
(Figure 2.9) and 2.4 (Figure 2.11).
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Figure 6.24. Model showing the 3 different contexts. From left to right, formation of gas hydrates and mounds, and
collapse of surface-type methane hydrate accumulation. The red dashed line represents the Sulfate Methane
Transition (SMT). Green sediments represent carbonates while grayish white sediments near them represent hydrates
(Modified from Matsumoto et al. (2009) in Freire, 2017).

According to Matsumoto et al. (2009), during the LGM, due to pressure release caused
by sea level fall, methane hydrate around the depth of BGHS was dissociated, generating large
volumes of methane gas, which in turn migrated upward to the seafloor because there was
insufficient free water to form hydrate in clay-silt stones. Hence, a large-scale release of methane

would cause a large depression and deposition of black-dark layers (Matsumoto et al., 2009).

This hypothesis was also supported by the geochemical analysis of MDCAs
(Watanabe et al., 2008; Sanno, 2008; Suzuki, 2010 in Matsumoto et al. 2017a). Matsumoto et al.
(2017a) reported that the age of MDCAs, centered at around 20 ka, seems to indicate that the
eustatic sea level fall toward the LGM caused massive dissociation of gas hydrates and consequent
methane migration on and around active mounds due to shoal up of BGHS by at least 10 meters;
accelerated Anaerobic Oxidation of Methane (AOM) and carbonate precipitation at Sulfate
Methane Transition (SMT); formation of gas hydrates in shallow subsurface where the ample free
waters are available for hydrate formation. The age of MDCAs was determined by U-Th
radioactive disequilibrium methods at National Taiwan University.
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Thus, by zooming in on the pockmark, we can see the possible sediments filled with
hydrates, in the purple spots (Figure 6.25), where the seismic attenuation is less. Note that the color
scale has been modified to highlight only those possible regions. Thereby, according to previous
works, this pockmark of the US-19 seismic profile should be the result of the explosion of a mound
after a dissociation of the gas hydrates due to the reduction of the pressure of the water layer during
the LGM.

Figure 6.25. Pockmark and Gas hydrates (purple spots) of US-19 seismic profile with instantaneous frequency
attribute. The purple spots represent frequency values above 200 Hz. While red spots mean frequency values below
150 Hz.

Therefore, the instantaneous frequency seismic attribute is fundamental to highlight
the free gas zone. In this way, it also served to highlight the true BSR, which seismically
corresponds to the BGHSZ, due to the fact that below the true BSR there should be a greater
seismic attenuation (free gas zone) contrasting with a lower seismic attenuation over it (sediments
filled with hydrates). Then, applying the instantaneous frequency attribute was crucial to

distinguish the true BSR (close to H-I11 reflector) from the H-11 reflector.
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6.2 Final Results

Therefore, each seismic attribute played a fundamental role in identifying the BSR of
each seismic section. Thus, the identification of the BSR was made by analyzing each result of the
application of the six seismic attributes. Then, making a comparison between the results, for each
seismic section, the BSR seismic horizon was interpreted (Figure 6.26). In total, twenty eight
horizons interpreted (fourteen from the NT07-20 Expedition seismic sections and fourteen from
the NT08-20 Expedition). The results of the application of the six seismic attributes and the

respective interpretations of the BSRs are found in the Appendix.
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Figure 6.26. Interpreted BSRs for each seismic section below the seafloor grid. The data is in milliseconds. The color
scale refers to the Elevation time (ms) of the BSRs. Thus, the longer the time, the greater the depth. Red colors
correspond to shallow areas (close to 1.4 s TWT), while purple colors represent deeper zones (1.8 s TWT). “Survey
2008 [54]” to the right of the color scale shows the values of elevation time (ms) of the BSR from US-54 (SP.1(ut-
54) from NT08-09 Expedition).

Thus, making a comparison between the initial (Figure 5.7) and final interpretation we

have Figure 6.27. Note that the application of seismic attributes was essential for a better
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interpretation (Figure 6.27B), because it enhanced the BSR, making them more visibly and

continuous. Whereas, in the scenario of the initial interpretation (Figure 6.27A), BSRs in the

original seismic section are weak, discontinuous and patchy.

Elevation time (ms)

T 4455000
T 4150000

Yoaxs

Figure 6.27. Interpreted BSRs for each seismic section below the seafloor grid (A) initial interpretation; (B) final
interpretation. Both data are in Two-Way Travel time (ms). The color scale refers to the Elevation time (ms) of the

BSRs.
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Thus, evaluating the final result obtained (Figure 6.28), the BSRs in gas chimney
ranges from 1.4 s to 1.5 s TWT, approximately 0.2 s TWT below seafloor. While in surrounding
sediments ranges from 1.6 sto 1.8 s TWT, about 0.4 TWT bsf.
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Figure 6.28. Interpreted BSRs for each seismic section below the seafloor grid. The scale color corresponds to the
elevation time in Two-Way Travel (milliseconds) of the BSRs.

Furthermore, while identifying BSRs in these seismic profiles, as in previous studies
(e.g., Freire et al., 2010; Freire et al., 2011) flat spots were identified in certain seismic profiles
below the BSR, which indicates gas with high water saturation. Then, this seismic reflector was
also interpreted (Figure 6.29), approximately 1.6 s TWT (about 0.2 s TWT bsf). This from an
economic point of view is bad because it reduces the viability of gas production from natural gas
hydrates (Walsh et al., 2009). Nevertheless, from a scientific point of view it is good, because the
flat spot served as a seismic response that the geophysical method used really works.
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Figure 6.29. Flat Spot horizon interpreted below seabed grid. The data is in milliseconds. The color scale refers to
the Elevation time (ms) of the flat spots. Red colors mean shallower zones (shorter time TWT, less than 1540 ms
TWT), while purple color mean deeper areas (close to 1620 ms TWT).

However, the focus of this work was the application of seismic attributes to enhance
BSRs. Even though the seismic attributes algorithms were created to work with multi-channel data
and the data used in this work is single-channel, so its use is impaired by the low multiplicity of
the signal, good results were obtained and the objective of this work was achieved. Analyzing the
interpreted BSRs, notice the shallow areas in red (Figure 6.28 and Figure 6.30). These zones are
associated with gas chimneys, where the upward migration of hydrocarbon gases develops gas
hydrates accumulations, and that is also associated with occurrence of mounds and pockmarks, as
noted in previous work (e.g., Matsumoto et al. 2009, 2011a, 2017a.b; Freire et al., 2011). In Figure
6.30 this is more visible, note that the central, shallower part (red color of the BSRs, close to 1.4 s
TWT) coincides with the zones of occurrence of mound and depression visible in the seafloor grid,
in green (close to 1.2 s TWT).
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In addition, the frequency attributes showed that this region something unusual occurs,
which is the presence of free gas above the BSR. This is evidenced by the anomalously low
velocities (1200-1300 m/s) found from velocity analysis of 3D seismic data reported by Saeki et
al. (2009 in Matsumoto et al. 2011b) and also reported by the Logging-while-drilling (LWD)
profiles from Matsumoto et al. (2017a,b), which imply the existence of free gas in shallow

sediments, within the gas hydrate stability zone.
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Figure 6.30. All BSRs interpreted below the seabed grid. Data is in TWT milliseconds. The color scale refers to the
Elevation time (ms) TWT of the BSRs.
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Chapter 7 CONCLUSION

This work developed a methodology for the interpretation of the Base of the Gas
Hydrate Stability Zone, in the Umitaka Spur gas hydrate province, Joetsu Basin, Japan, which
constituted the application of seismic attributes to enhance Bottom Simulating Reflectors. Due to
the local geological complexity, such as gas chimneys that generate acoustic transparency of the
signal and discontinuities of the BSRs, in addition to the presence of more than one reflector with
reverse polarity that mimics the seafloor reflector in the shallow areas of the Haizume Formation,
it is not trivial to make this interpretation without an aid of these seismic attributes. So, there is a
need to apply seismic attributes to facilitate the visualization of BSRs and free gas zones associated

with these unconventional reservoirs in the seismic profiles.

Thus, in this work, 6 seismic attributes were applied to twenty eight single-channel 2D
seismic profiles provided by JAMSTEC, acquired in 2007 (NT07-20 Expedition) and 2008 (NT08-
09 Expedition). Respectively, two attributes that measure amplitude (Envelope and RMS), two of
geological assignment (AVT and RAI) and two that measure the frequency of the seismic signal

(Instantaneous frequency and Spectral Decomposition) were used.

The Envelope seismic attribute served to highlight the regions of greatest amplitude
energy. However, it proved ineffective to distinguish a true BSR from another reflector with high

impedance contrast.

Amplitude RMS generated a result similar to the application of the envelope, but this
attribute was more used in order to be able to apply the Amplitude Volume Technique. Both the
AVT seismic attribute and the Relative Acoustic Impedance served to highlight the impedance
contrasts of the layers and thus the discontinuities, allowing a better visualization of the sections
intercepted by faults. The RAI attribute made reflectors stronger, reducing the effects of acoustic

transparency of free gas zones.

Ultimately, the analysis of the frequency domain of the seismic data was made. Thus,
the Instantaneous Frequency and Spectral Decomposition seismic attributes were applied to
investigate the seismic attenuation of the data. Thus, because the higher frequencies tend to be
attenuated more quickly than the low ones, and because the presence of free gas attenuates the

seismic signal, these attributes highlighted the free gas zone strongly present in Umitaka Spur,
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where the lower frequencies are more dominant in seismic profiles. In this way, both attributes
served to highlight the BSR, which comparatively is like a border that separates a zone of greater
attenuation (free gas zone below) from a milder seismic attenuation (gas hydrates in sediments
above). Thus, these seismic attributes were relevant to reduce the ambiguities of the attributes that
measure only amplitude. For instance, applying the instantaneous frequency attribute was crucial
to distinguish the true BSR (close to H-IlI reflector) from H-II reflector, as it showed that the
current zone of stability of gas hydrates is close to the horizon H-I11, where there is currently a free
gas zone just below. In addition, these attributes also reaffirmed something out of the ordinary that

occurs in this region, which is the presence of free gas above the BSR.

Therefore, seismic attributes play a fundamental role in the analysis of subsurface
layers. They reduce the uncertainties inherent to Geophysics, giving the interpreter greater
security. Thus, through the bibliographic references of the region and after the application of these
attributes, it can be reaffirmed that the Base of the Gas Hydrates Stability Zone really lies at
approximately 115 mbsf and there is an unusual presence of free gas within the gas hydrate stability

zone, as previously reported.
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APPENDIX A-2D SCS PROFILES WITH SEISMIC ATTRIBUTES
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SCS profile US-07 with Relative Acoustic Impedance. Lilac line indicates BSR.
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SCS profile US-08 with Relative Acoustic Impedance. Lilac line indicates BSR.
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SCS profile US-08 with Instantaneous Frequency. Lilac line indicates BSR.



SCS profile US-08 with Spectral Decomposition of 100 Hz. Lilac line indicates BSR.
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SCS profile US-08 with Spectral Decomposition of 100 Hz plus Envelope. Lilac line indicates BSR.
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SCS profile US-09 with Envelope. Blue line indicates BSR.
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SCS profile US-10 without application of seismic attribute. Green line indicates BSR.
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SCS profile US-10 with Amplitude VVolume Technique. Green line indicates BSR.
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SCS profile US-10 with Relative Acoustic Impedance. Green line indicates BSR.
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SCS profile US-10 with Spectral Decomposition of 100 Hz plus Envelope. Green line indicates BSR.
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SCS profile US-11 without application of seismic attribute. Green line indicates BSR.
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SCS profile US-11 with Amplitude Volume Technique. Green line indicates BSR.
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SCS profile US-11 with Instantaneous Frequency. Green line indicates BSR.
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SCS profile US-11 with Spectral Decomposition of 100 Hz plus Envelope. Green line indicates BSR.
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SCS profile US-12 with Envelope. Green line indicates BSR.
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SCS profile US-12 with Instantaneous Frequency. Green line indicates BSR.
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SCS profile US-12 with Spectral Decomposition of 100 Hz plus Envelope. Green line indicates BSR.
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SCS profile US-13 with Envelope. Green line indicates BSR.
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SCS profile US-13 with Amplitude Volume Technique. Green line indicates BSR.
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SCS profile US-13 with Relative Acoustic Impedance. Green line indicates BSR.
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SCS profile US-13 with Instantaneous Frequency. Green line indicates BSR.
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SCS profile US-13 with Spectral Decomposition of 100 Hz. Green line indicates BSR.
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SCS profile US-13 with Spectral Decomposition of 100 Hz plus Envelope. Green line indicates BSR.
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SCS profile US-15 with Amplitude Volume Technique. Green line indicates BSR.



-1300+1

-1500

TWT (ms)

~2000+]

;
]
]
8
8
]
E
g

1
Gill 6!5 7?7 e

1300+

<1400+

-1500

TWT (ms)

~1700+

20007

SCS profile US-15 with Relative Acoustic Impedance. Green line indicates BSR.



UNE
TRACE

Lo

1200

1500~

1600

TWT (ms)

17001

1900+

2000

[Seismic - Freque|

1400

1600+

TWT (ms)

1700~

19004

-2000

SCS profile US-15 with Instantaneous Frequency. Green line indicates BSR.



222

w E|
une
TRACE
- Seismic (defaul|
25000 00
20000 00
10509.00
~1300< £000 00
000
-5000.00
~10000 00
-15000 00
12004 -25000 00
1500

TWT {ms)

~1700-|

~1800-

-1900+

-1300+1

1400+

~1500+

TWT (ms)

<1700+

-1900-

SCS profile US-15 with Spectral Decomposition of 100 Hz. Green line indicates BSR.



TRACE

1o

1500

1600+

TWT (ms)

1700+

1800+

-1900+

-2000

-1300¢

1200

-1500-1

1600+

TWT {ms)

<1700~

1800+

~1900+

-2000

-

-

- s g RS
.- .;{“..7:0';

[Seismic (d'hun

A\

2 Sl

SCS profile US-15 with Spectral Decomposition of 100 Hz plus Envelope. Green line indicates BSR.



224

w " e use_Avs E
. p : USE_Teawh
UNE 1 1 1 1 1 1 1 1 1 1 1 1
TRACE 807 5 607 642 586 531 4 4'11‘7 (Y 316 287 01 148 87 0
1 1 1 1 N

1200+

1400+

-1500+1

TWT {ms)
§

-1700+

UNE
TRACE

-14004

-1500

TWT (ms)

1600-]

-1700

SCS profile US-17 without application of seismic attribute. Green line indicates BSR.




w = 4_mus usey_mus E
. 24_Toca USE)_TecvA
UNE 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TRACE &7 1 607 642 586 531 a7 427 an 316 257 01 148 87 0
1 1 I I L 1 » 1 Il I r .l 1
-12007]
~1300+
-1400+
15001

TWT {ms)

16001
1700
<1800+
<1900+
w = o4 _nus usey_Avs E
. 4 _Tocva US23_Tacvh
UNE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TRACE 807 754 €97 642 586 531 4 a7 an 316 257 201 148 87 20
Il L I 1 L L 1 »n n 1 1 1 Xl 1 1
Seismic (defaul|
70000 00
1200 60000 00
S0000
40000 00
30000
20000
10000 00
1300
-14004
-1500

1600

TWT {ms}

1700

1800+

1900+

SCS profile US-17 with RMS Amplitude. Green line indicates BSR.



UNE
TRACE

1200

-1400+

-1700-

18500+

LUINE
TRACE

-1200

-1400-{

~1500+1

TWT {ms)
i

-1700+

1
™

.
1

o4_nus
4 _TecvA

usey_aus E
USE)_Tecvh
1

|
i

T

il

SCS profile US-17 with Amplitude Volume Technique. Green line indicates BSR.



227

=8

1200

1300+

-1400+

-1700+

“1800+4

«1900-

24_pus
24_Teavh

x4

12007

1300+

1400+

-15007
16001
-1700+
18500+
1900

{suw) LmL

es BSR.

icat

Green line ind

Impedance.

IC

th Relative Acousti

le US-17 wi

SCS prof



UNE
TRACE

-14004

TWT (ms)

1600

-1700

1900

-14004

TWT (ms)

-1700

1800

[T — —
SCS profile US-17 with Instantaneous Frequency. Green line indicates BSR.




<1200

1300

-1400

<1800+

<1900+

i

~1200

~1400-

-1500-|

1600

TWT (ms)

<1900

SCS profile US-17 with Spectral Decomposition of 100 Hz. Green line indicates BSR.



uNE 1 1 1 1 t 1
TRACE &7 751 607 642 586 531 an a1

12007
1300

14004

TWT {ms)

1600+

-1700+

1900

INE
TRACE

12007

1300

1400-{
1500
W
€
= 1600
-1700
1800

1900

148




N

31

w E|
UNE
TRACE
1200 Seismic (defaul|
40000 00
mg
o oo
~10000.00
-20000%
-40000 00
1200 -50000 00
60000 00
-70000.00
~1500
~1600-

1700

TWT (ms)

~18600+|

-1900-

2100+

2200

14001

~1600-]

~1700+

TWT {ms)

-1800+|

1900+

2100+

2200+

SCS profile US-18 without application of seismic attribute. Green line indicates BSR.



232

w E
UNE
TRACE
1200 | Seismic (defaul|
70000 00
60000 00
50000 00
~13004 40000 00
30000 00
20000 00
10000 00
1400+ LE]
~1500-
1600
w
13
‘g ~17004
-1800+
-19004
2000
-2100+
-22007
w E
UNE
TRACE
1200 Seismic (defaul
70000 00
60000 00
£0000 00
1300+ 40000 00
0000 00
20000 00
10000 00
1400+ oL
~15004
1600
W
E
'g ~1700+|
-18004
-1900+
20004
-2100+
22004

SCS profile US-18 with Envelope. Green line indicates BSR.
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SCS profile US-19 with Spectral Decomposition of 100 Hz. Green line indicates BSR.
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SCS profile US-20 with Envelope. Green line indicates BSR.
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SCS profile US-20 with Amplitude Volume Technique. Green line indicates BSR.
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SCS profile US-22 with Spectral Decomposition of 100 Hz plus Envelope. Green line indicates BSR.
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SCS profile US-23 with Envelope. Green line indicates BSR.
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1ermd UBn3_Tecva
w i - §

SCS profile US-23 with Amplitude Volume Technique. Green line indicates BSR.



266

i

|

2832 8888888

LR

-13004

1400+

500+

~17004

|

g232 8888888

LR
[ -

Green line indicates BSR.

Acoustic Impedance

SCS profile US-23 with Relative



267

~1300+4

~1400+

1500+

~1600

TWT {ms)

“1700-

1800+

UNE
TRACE

1200~

1300

1400

1500

~1600

TWT {ms)

1700

1800+

-20004

1 1 1
TRACE 857 796 78 (38} 540 488 a7 357

Seismic - Frequd
20000
100 00

0.00
-100 00
-200 00

UB93_Tecka 3
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SCS profile US-29 with Amplitude Volume Technique. Green line indicates BSR.
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SCS profile US-51-2 with Instantaneous Frequency. Black line indicates BSR.
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SCS profile US-53 without application of seismic attribute. Green line indicates BSR.
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SCS profile US-53 with Spectral Decomposition of 100 Hz. Green line indicates BSR.
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SCS profile US-54 with Spectral Decomposition of 100 Hz plus Envelope. Green line indicates BSR.




