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Abstract 

This thesis aims to build workflows using innovative 3D reservoir characterization techniques 

that have the capacity of provide robust, automatized, and with fair predictability lithological 

facies and petrophysical properties models from well data and secondary data can honor the 

heterogeneities for complex reservoirs, such as the presalt Aptian carbonates in the Brazilian 

marginal basins. First, I applied for the first-time an integrated approach between 4D 

sedimentary modeling and geostatistical modeling for facies reconstruction for presalt 

reservoirs from Barra Velha Formation within the Buzios Field located in the Santos Basin. The 

results from this first study demonstrate that this methodology makes it possible for the 

geomodeler to incorporate its conceptual geological knowledge about the facies 

paleoenvironment to be modeled in a more precise manner and the integration with geostatistics 

allows proper matching of the facies model with well data. For the second study, I used of a 

neural network algorithm for a multi-attribute unsupervised seismic facies classification. My 

results from this study showed that this technique allows the automatized creation of a 3D 

seismic facies model that can be further associated with the porosity and permeability 

distributions from well data for a qualitative inference of the reservoir properties. The third 

study present in this thesis approaches also for the first-time the use of a pre-commercial and 

innovative machine learning methodology that implements geostatistical concepts for 

supervised estimation of petrophysical reservoir properties from multiple secondary variables 

called EMBER. The results from this study allowed the quantitative evaluation of the reservoirs 

from Barra Velha Formation through the creation of effective porosity and permeability 3D 

models also helping to address the uncertainties related to effective porosity distribution. Before 

this research, two of those methodologies had never been applied for carbonate rocks 

characterization or presalt Aptian reservoir modeling. Finally, I hope that those standardized 

methodologies and the results discussions from this thesis can help the presalt studies to build 

a better understanding of these reservoirs origins diminishing complexity and provide 

alternatives for the classical reservoir characterization approaches which not always can 

properly provide robust results impacting the future of oil and gas exploration and production. 

Keywords: Presalt carbonates, 3D reservoir characterization, Machine Learning, 4D 

Sedimentary Modeling.  

  



Resumo 

Esta tese tem como objetivo construir fluxos de trabalho usando técnicas inovadoras de 

caracterização de reservatórios 3D que tenham a capacidade de fornecer modelos de fácies e 

propriedades petrofísicas robustos, automatizados e com previsibilidade razoável a partir de 

dados de poços e dados secundários, honrando as heterogeneidades de reservatórios complexos 

como os carbonatos Aptianos do pré-sal brasileiro. Inicialmente neste trabalho, foi aplicada 

pela primeira vez uma abordagem integrada entre modelagem sedimentar 4D e modelagem 

geoestatística para a reconstrução de fácies para reservatórios de pré-sal da Formação Barra 

Velha do Campo de Búzios localizado na Bacia de Santos. Os resultados deste estudo 

demonstraram que esta metodologia possibilita a incorporação do conhecimento geológico 

conceitual paleoambiental as fácies a serem modeladas de forma precisa e sua integração com 

a geoestatística para correspondência adequada do modelo com dados de poços. No segundo 

estudo, foi utilizado um algoritmo de rede neural para classificação de sismofácies 

multiatributos não-supervisionada para a mesma área. Os resultados deste trabalho mostraram 

que esta técnica permite a criação automatizada de um modelo de sismofácies 3D que pode ser 

posteriormente associado as porosidade e permeabilidade de perfis de poços para uma 

inferência qualitativa das propriedades do reservatório. O terceiro estudo presente nesta tese, 

também pela primeira vez publicado, aborda o uso de uma metodologia pré-comercial e 

inovadora de aprendizado de máquina que implementa conceitos geoestatísticos para estimativa 

supervisionada de propriedades de reservatórios petrofísicos a partir de múltiplas variáveis 

secundárias denominada EMBER. Os resultados deste estudo permitiram a avaliação 

quantitativa dos reservatórios da Formação Barra Velha através da criação de modelos 3D de 

porosidade efetiva e permeabilidade e auxiliando na avaliação das incertezas relacionadas à 

distribuição efetiva da porosidade. Antes desta tese, duas dessas metodologias nunca haviam 

sido aplicadas para caracterização de rochas carbonáticas ou modelagem de reservatórios 

Aptianos do pré-sal. Finalmente, espera-se que essas metodologias padronizadas e as discussões 

dos resultados desta tese possam ajudar na construção de um melhor entendimento das origens 

desses reservatórios, reduzindo a complexidade e fornecendo alternativas para as abordagens 

clássicas de caracterização de reservatórios que nem sempre podem fornecer resultados 

robustos impactando no futuro da exploração e produção de petróleo e gás. 

Keywords: carbonatos do pré-sal, caracterização de reservatórios 3D, aprendizagem de 

máquina, modelagem sedimentar 4D.   
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Preface 

Why geosciences? Why geological modeling? 

One of the most important phrases for history and science is without a doubt the 

famous “You have to know the past to understand the present” from Carl Sagan. During 

my academic career in geosciences, I could notice that I had become a history researcher 

of Earth`s history which is longer and more complex than human history. However very 

much alike to the advocated by Sagan, it is essential the comprehension of the origin and 

dynamics of older rock formations for the understanding of present geology and its 

evolution. Although, several times in geosciences the contrary logic is also true where 

understanding the present is necessary to support the unraveling of the geological history 

of the past. 

These premises are the basis for geological modeling which is a technique greatly 

applied by the oil and gas industry, one of the economic sectors most important to society. 

This sector is responsible for proving not only energy but also feedstock for other sectors. 

Specifically, geological modeling is a tool that allows the creation of tridimensional 

models of rock in the subsurface and, applied to the hydrocarbon exploitation, supports 

the inference of reservoir characteristics for production planning and optimization. 

My academic career started, like the ones from many other geological modeling 

researchers, applying a specific rock physics methodology to characterize a sedimentary 

environment from a hydrocarbon reservoir and try to predict the changes that would occur 

to it during production.  

Advised by professor and Ph.D. Sergio Bergamaschi from the Universidade do 

Rio de Janeiro (UERJ) and the co-advisership of researcher and Ph.D. Sergio Sacani from 

Halliburton, I performed the 1D fluid substitution modeling using the Gassmann-Biot 

equations as a 4D feasibility study for the siliciclastic Paleocene reservoirs from the South 

Viking Graben in the North Sea. This study was my bachelor’s monography in 2015 and 

my first contact and contribution for the geoscience’s academic environment in the 

reservoir characterization field. 

After the conclusion of the geology bachelor, I started still in 2015 as a latu sensu 

post-grad at the Seismic Stratigraphic Interpretation course, also at UERJ sponsored by 

the company Statoil, current Equinor. In that environment, I had the opportunity to get in 



contact with most of the reservoir interpretation and characterization techniques from 

seismic interpretation and well log analysis to geostatistical modeling and seismic 

inversion. It was also during this course that with a group of colleagues I made my second 

contribution to the geoscience’s academic research sector with the conclusion study in 

2016: Prospective study in the NE sector of the Oliva Field, Santos Basin. 

In the same year, I joined the Universidade Federal Fluminense (UFF) as a 

master’s degree candidate in the stricto sensu post-graduation program Dinâmica dos 

Oceanos e da Terra having as an advisor the professor and PhD. Wagner Moreira 

Lupinacci. The master's degree project I worked on the application of seismic acoustic 

inversion associated with geostatistical modeling for the facies and petrophysical 

properties of the Albian carbonate platform of the Pampo Field located at the Campos 

Basin. The results from my master's project in the first year allowed the publication of 

my first academic paper (Ferreira and Lupinacci, 2018) at the AAPG Bulletin journal.  

During this period, I was able to contribute as a technical support for two other 

studies that applied the same methodology for reservoir characterization for the Albian 

and Aptian carbonates from the Linguado Field, Campos Basin. Also I co-authored the 

two outcome papers from these studies (Peçanha et al., 2019; Lupinacci et al., 2020) 

published at the Journal of Petroleum Science and Engineering and Brazilian Journal of 

Geology, respectively.  

Still during my master’s degree period in the second year, I started working as a 

researcher in a research and development project at UFF focused on the salt layer and 

presalt reservoirs characterization at the Santos Basin sponsored by the company Galp 

Energia. Our research group was focused on a presalt field where I had the opportunity 

to learn and make contributions related to the use of innovative machine learning 

methodologies for reservoir characterization. More specifically, I applied the workflow 

of unsupervised seismic facies classification using several seismic attributes as inputs in 

a self-organizing maps algorithm and the results of this study allowed me to author the 

publication of the paper Ferreira et al. (2019) at the AAPG Bulletin journal. 

Also in the same research team, I had the opportunity to co-author and participate 

in several other papers related to interpretation and discussions regarding (i) the 

paleogeography of the Brazilian presalt carbonate reservoirs in Neves et al. (2019) at the 

Interpretation journal, (ii) the impacts of halokinesis in seismic interpretation in Lupinacci 



et al. (2019) at the Brazilian Journal of Geophysics and (iii) the application of spectral 

decomposition, pre-stack inversion and machine learning techniques to reduce 

exploratory risks for siliciclastic reservoirs in Jesus et al. (2020) at the AAPG Bulletin 

journal. 

I concluded my master’s degree in 2018 and, in the same year, I joined again the 

post-graduation stricto sensu course Dinâmica dos Oceanos e da Terra at UFF as a Ph.D. 

candidate continuing the advisership with the professor and Ph.D. Wagner Moreira 

Lupinacci. Initially, the proposed theme for my Ph.D. project was to apply the developed 

workflow in Galp Energia project for seismic facies unsupervised classification using 

seismic attributes for other presalt fields. The goal was the standardization of this 

technique that automatizes and facilitates the reservoir characterization of these carbonate 

rocks that are complex in genesis and facies distribution and, consequently, petrophysical 

properties such as porosity and permeability. For this project, we required as a dataset the 

seismic and well data in the area of the Buzios Field, located in the Santos Basin, for the 

ANP (Agência Nacional de Petróleo, Gás Natural e Biocombustível). This field is 

currently one of the most important producing presalt fields in the national scenario. 

Nevertheless, at the beginning of my Ph.D., I started working as a geologist at 

Schlumberger company where I had contact with another innovative reservoir 

characterization methodology. This method was based on 4D sedimentary modeling 

which allowed the modeling of sedimentation through geological time considering the 

paleoenvironmental dynamics, basically acting as a digital sedimentary laboratory. 

Therefore, envisioning to obtain a more conceptual understanding of the sedimentary 

origin of the presalt carbonate reservoirs, I applied this technique integrated to 

geostatistical modeling for facies reconstruction of the Barra Velha Formation at the 

Buzios Field, which became my first academic paper during the Ph.D. in Ferreira et al. 

(2021a) at Marine and Petroleum Geology journal. 

After this study, I came back to the initial scope of the Ph.D. project which was 

related to the application of machine learning techniques for unsupervised seismic facies 

characterization. I applied neural networks algorithms on the Barra Velha Formation 

carbonates in the Buzios Field to achieve that objective and associated the results with 

porosity and permeability well data to infer qualitatively about the properties of these 

reservoirs. The outcome from this work allowed the publication of the second paper 



during the Ph.D. in Ferreira et al. (2021b) at the Journal of Petroleum Science and 

Engineering. 

In the final phase for the Ph.D. in 2021, I had the opportunity to get involved in a 

project within Schlumberger to test an innovative and cloud-based pre-commercial 

machine learning approach that was developed to integrate geostatistical concepts for 

reservoir property modeling called EMBER. I applied this technology to the Barra Velha 

Formation in the Buzios Field to model effective porosity and permeability aiming a 

quantitative evaluation of the reservoir properties of these carbonates using as input for 

the algorithm seismic attributes and the facies model build in the 4D sedimentary 

modeling integrated with geostatistics paper (Ferreira et al., 2021a). This final study 

allowed the integration between the two innovative reservoir characterization 

technologies applied during the Ph.D. as well as allowed the publication of the last paper 

from my Ph.D. (Ferreira et al., 2021c) at the Leading Edge journal in the Latin America 

Special Edition. 

Finally, I hope that the academic contributions here described can help to promote 

the knowledge of new techniques developed for reservoir characterization and geological 

modeling amongst new professionals in the geosciences sector looking for a career in the 

oil and gas industry as well as providing one more piece on the puzzle of the presalt 

Brazilian carbonate reservoir complexity and property distribution behavior. 

  



1. Introduction 

Reservoir characterization is a process that consists of the tridimensional 

determination of seismic patterns, structures, and rock properties of a field. The main 

objective is to build a geological model that can incorporate all the gathered information 

in the available data which allows prediction, monitoring, and production optimization of 

the hydrocarbons present in the lifespan of a field (Sancevero et al., 2006).  

This process can become especially more difficult the more complex is the origin, 

depositional dynamics, and compositional heterogeneity of the rocks to be characterized. 

And such is the case for the presalt Brazilian carbonate reservoirs which usually required 

its analysis, interpretation, and modeling to be sustained by a deep conceptual geological 

knowledge of the modeler as well as the use of advanced reservoir characterization 

techniques (Johann et al., 2012; Johann, 2013; Bruhn et al., 2017). 

The presalt reservoirs are currently the most important oil and gas producers in 

Brazilian production. In 2021, they were responsible for the expressive oil production of 

2.1 Mbbo/d and gas production of 90.000 Mm3/d accounting for approximately 72% of 

the total Brazilian hydrocarbon production (ANP, 2021). 

According to Riccomini, Sant´Anna e Tassinari (2012), the main petroleum 

systems for the Brazilian presalt have as reservoirs: the carbonate rocks of alkaline and 

lacustrine origins, such as the Barra Velha Formation in the Santos Basin (Moreira et al., 

2007), the biologically sedimentation controlled carbonate coquinas and fractured 

igneous rocks (Chang et al., 2008). All of these reservoirs were formed during the rift and 

sag formation phases of the marginal Brazilian basins (Moreira et al., 2007; Wright and 

Barnett, 2015). 

Still, according to these authors, the seal and source rocks components of these 

petroleum systems are composed of, respectively, lacustrine shales of high organic 

content deposited during the rift phase of the Brazilian marginal basin development, and 

the seals are represented both by the salt layers and the very source shales. 

As stated by Wright (2012), perhaps the most complex and the biggest source of 

interest and uncertainty reservoir in the presalt petroleum exploration context are the 

alkaline lacustrine origin carbonates developed during rift and sag evolution phases of the 

marginal Brazilian basins initially described as travertines/microbialites (Moreira et al., 



2007; Terra et al., 2010; Azerêdo et al., 2011; Buckley et al., 2015). The uncertainty 

related to these reservoirs comes from the lack of publications and, consequently, 

investigations of the origin of carbonate rocks in a lacustrine environment.  

One of the first studies that compile the possible formation contexts of these types 

of lithologies in a sedimentary lacustrine environment is from Porta Della (2015). 

However, as stated by Wright (2012), Wright & Barnett (2015), and Szatmari & Milani 

(2016), it is most probable that the sedimentary dynamics which controlled the formation 

of these presalt carbonates acted by the interaction between the lixiviation of elements 

from the volcanic terrains around the lakes and hydrothermalism. This synergy saturated 

these lakes with alkalis that together with the paleoweather conditions controlled the 

carbonate factory mainly by chemical precipitation. 

We can also find a few lithological formations already studied that can be 

considered analogs for some of the processes that occurred during the presalt lacustrine 

carbonates precipitation. Some examples are the carbonate facies described in the great 

US lakes, such as the Mono Lake (Council and Bennett, 1993) and the Great Salt Lake 

(Chidsey et al., 2015), the carbonate rocks from Shark Bay in Australia (Logan et al., 

1970), the lacustrine carbonates from the east African rift (Cerling, 1994), and the alkaline 

lacustrine carbonates with volcanic interaction from East Kirkton in Scotland (Mercedes-

Martín et al., 2017; Rogerson et al., 2017). 

However, it is important to cite that not all studies consider that the dynamics for 

the origin of the presalt lacustrine carbonates are dominated by chemical precipitation. 

Several authors such as Terra et al. (2010), Muniz and Bosence (2015) and Saller et al. 

(2016) suggest that these carbonate rocks may have a biologically controlled precipitation 

similar to the ones observed in microbialites. 

It is a fact that none of these analogs can be fully considered a proper sedimentary 

model for the presalt lacustrine carbonates from Brazil. Therefore, due to its origin high 

complexity until recently the geoscientist still find difficulties of conformity in the 

creation of depositional models that can justify the physical-chemical and biological 

dynamics present during the sedimentation or possible precipitation of these reservoirs. 

This is the reason there are several models proposed in literature such as the ones from 

Wright and Barnett (2015), Sabato Ceraldi and Green (2016), Farias et al. (2019), Gomes 

et al. (2020), amongst others. 



The challenging theoretical understanding and knowledge uniformity regarding 

the paleoenvironment and depositional controls for these lacustrine reservoirs, 

consequently, translate themselves into high complexities in the 3D characterization 

process of these facies in the oil and gas scenario. Thus it is not uncommon to find in the 

literature the use for advanced geological modeling purposes of several machine learning 

methodologies (Ferreira et al., 2019a; Ferreira et al., 2019b; Jesus et al., 2019), inversion 

methods for the inference of petrophysical properties (Dias et al., 2019; Figueiredo et al., 

2019; Penna et al., 2019; Penna and Lupinacci, 2020; Penna and Lupinacci, 2021), as 

well as stratigraphic forward modeling (Liechoscki de Paula Faria et al., 2017; Ferreira 

et al., 2021a). 

The high importance of these reservoirs is counterbalanced with the lack of 

knowledge and certainty regarding its origin and most proper 3D reservoir 

characterization methodologies for the presalt alkaline lacustrine Brazilian reservoirs. 

Therefore, in this thesis, my objective was to evaluate, investigate and characterize the 

Barra Velha Formation, one of these reservoir representatives deposited during the upper 

rift and sag phases from the Santos Basin in the opening of the South Atlantic Ocean 

(Moreira et al., 2007; Wright and Barnett, 2015). 

It is important to highlight that the most prolific hydrocarbon producer basin in 

Brazil from the presalt reservoirs in the Santos Basin. The Buzios Field is its most 

productive oil and gas field, operated by Petrobras, responsible for 27% of the basin total 

production with more than 30 billion barrels of light oil of estimated reserves with 27⁰ 

API (ANP, 2016, 2021). Due to its importance in the national oil and gas scenario this 

field is the study area of this thesis. 

My motivation for this thesis was to build and standardize using innovative 3D 

reservoir characterization techniques workflows that can provide robust, automatized, 

and fair predictability modeling results for lithological facies and petrophysical properties 

for the Barra Velha Formation respecting its heterogeneities. The input data would be 

well data and secondary data and the results from these methodologies would help to 

provide a better understanding regarding this complex geological Formation settings. 

To achieve these objectives and fulfill the proposed motivation, this thesis was 

subdivided into the application of three innovative and advanced reservoir 

characterization techniques in the Barra Velha Formation from the Buzios Field area that 



originated as outcomes three already published papers in several journals. In chronologic 

order, the first study and article refer to the first-time published application of an 

integrated approach between 4D sedimentary modeling and geostatistical modeling for 

the facies reconstruction for presalt reservoirs at the Marine and Petroleum Geology 

journal. 

The 4D sedimentary modeling or geological process modeling or forward 

stratigraphic modeling is a revolutionary technology that allows the creation of digital 

conceptual sedimentary models based on the simulation of the physical and chemical 

mechanisms which control sedimentation and diagenesis through geological time 

(Merriam and Davis, 2001; Tetzlaff et al., 2014; Huang et al., 2015; Lanteaume et al., 

2018; Borgomano et al., 2020; Ferreira et al., 2021a). 

The outputs from this methodology can be associated with geostatistical modeling 

algorithms as sedimentary models for each facies present in the wells as secondary 

variables to make it possible for the geomodeler to incorporate its conceptual geological 

knowledge about the facies paleoenvironment to be modeled in a more precise manner 

into the chosen interpolation and extrapolation algorithm. This association between these 

modeling techniques was fundamental in my study for the reconstruction of a geological 

facies model for the Barra Velha Formation Buzios Field due to the possibility of 

incorporation of conceptual dynamics of the complex geology of these reservoirs for 

modeling honoring well data. 

The second study and article from this thesis, published at Journal of Petroleum 

Science and Engineering, used the application of a neural network algorithm for 

unsupervised seismic facies classification also for the Barra Velha Formation having as 

inputs a group of seismic attributes (Ferreira et al., 2021b). The neural networks method 

proposes to establish its machine learning dynamics and neuron architecture based on the 

organization and functioning of human neurons for pattern recognition aiming at data 

classification or estimation (McCulloch and Pitts, 1943). 

The results of the application of this technique allowed the quick and automatized 

creation of a 3D seismic facies model for the study area and reservoir interval and these 

outputs were further associated with the porosity and permeability distributions from well 

data per classified seismic facies for a qualitative inference of its reservoir properties. 



The third paper and study in this thesis, published at The Leading Edge journal, 

approached for the first time the application of a pre-commercial and innovative machine 

learning methodology that implements geostatistical concepts for supervised estimation 

of petrophysical reservoir properties from multiple secondary variables called EMBER 

developed by Daly (2020a). This innovative technique automatizes 3D reservoir 

modeling processes and aims to overcome a few of the premises and limitations from 

conventional geostatistical algorithms such as stationarity and required high linear 

correlation between primary and secondary variables when co-kriging is used (Ferreira et 

al., 2021c). Also, it allows the use of several secondary variables for modeling the primary 

variable unlike several conventional geostatistical methods (Hirsche et al., 1998). 

EMBER is a non-stationary spatial modeler that allowed then the use of several 

secondary variables for effective porosity and permeability modeling Buzios Field 

combining geostatistics and the quantile random forest machine learning algorithm. It is 

important to highlight that one of the secondary variables used for the petrophysical 

modeling in this study was the output facies reconstruction 3D model from the first paper 

from this thesis allowing a link between the two studies. 

As result of this last study (Ferreira et al., 2021c), effective porosity and 

permeability 3D models allowed the quantitative evaluation of the modeled reservoirs as 

well as to address the uncertainties related to the distribution of effective porosity. 

All the methodologies applied in the three studies and papers have their 

advantages and disadvantages and its appropriate application scenario depending on the 

detail required and available time for the geological modeling process. However, it is 

undeniable that all those techniques and workflow have their robustness when applied to 

high complex geological environments such as the case for the presalt carbonate Brazilian 

reservoirs. 

It is important to highlight that in thesis it is the first time that both the integrated 

approach between 4D sedimentary modeling and geostatistical modeling for the facies 

reconstruction for presalt reservoirs, first paper, nor the application of EMBER 

technology for carbonate reservoir quantitative characterization, third paper, has been 

performed, standardized and published. 

Finally, this thesis is structured in the presentation of each of the above-cited 

published papers in detail. Nonetheless, at the end of this thesis, final considerations of 



these studies and future expectations for the tridimensional reservoir characterization area 

are discussed. 
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Abstract 

The presalt reservoirs of the Barra Velha Formation are complex and heterogeneous. 

Their deposition was controlled by a mixture of physical and chemical processes, which 

consequently affected the distributions of facies and variations in porosity and 

permeability. In this paper we present a presalt facies reconstruction of reservoirs within 

the Barra Velha Formation of the Búzios Field. This was achieved through the use of an 

innovative workflow that integrates geological process modeling with a truncated 

Gaussian simulation geostatistical algorithm with trends. Our results show that the 

structural highs are dominated by carbonate build-ups/mounds architecture seismic 

patterns which are dominated by spherulites and its intercalation with shrub sediments 

culminating in spherulitites and shrubby carbonate lithologies. Reworked sediments and 

facies are concentrated in regions dominated by debris seismic patterns and lake bottom 

seismic facies corresponding to laminites also occur within the study area. In 

chronostratigraphic terms the Barra Velha is muddier at the base transitioning to in-situ 

carbonates in the middle section, before becoming muddier again at the top. The western 

portion of the Búzios Field is mostly composed by shrubby carbonates and reworked 

facies whilst spherulitities are more abundant to the east intercalated with shrubby 

carbonates. Some uncertainties remain in relation to the parameters used in the proposed 

methodology. Nonetheless, the proposed workflow was effective for facies reconstruction 

of the presalt carbonates allowing not only a better understanding of sedimentological 

processes but also accurately distributing facies throughout the study area. 



2.1. Introduction  

Geological process modeling is a technique of 4D reservoir characterization that 

allows the construction of conceptual sedimentary models based on the simulation of 

physical and chemical mechanisms, which control sedimentation and diagenesis through 

time (Merriam and Davis, 2001; Tetzlaff et al., 2014; Huang et al., 2015; Lanteaume et 

al., 2018; Borgomano et al., 2020). This approach has been successfully used for 

carbonate sedimentary modeling of the Triassic Esino Limestones in the Alps (Berra et 

al., 2016), the Miocene limestones from the Marion Plateau in Australia (Guerra, 2016), 

the Aptian carbonate platform in Abu Dhabi (Lanteaume et al., 2018), as well as for a 

number of Cenozoic, Mesozoic and Paleozoic carbonate platforms (Whitaker and Frazer, 

2018) and the Lower Cretaceous Urgonian platform in France (Borgomano et al., 2020). 

Geological process modeling has also been applied to clastic sedimentation in deep water 

turbidite systems from offshore Brazil (Acevedo et al., 2016; Høye et al., 2016; Madhoo 

et al., 2016). This modeling simplifies the exploration phase and optimizes reservoir 

characterization, allowing a better comprehension of sedimentary evolution and dynamics 

as it requires detailed (user) input of tectonic and eustatic parameters as well as rates of 

erosion and sediment transport. 

Geostatistical methods for determining petrophysical properties and reservoir 

characterization of facies are widely used, with an extensive bibliography (Ziegel et al., 

1998; Lantuéjoul, 2002; Caers, 2005; Pyrcz and Deutsch, 2014; Azevedo and Soares, 

2017). These methods have been successfully applied to the characterization of both post 

salt (Ferreira and Lupinacci, 2018) and presalt (Peçanha et al., 2019) Brazilian carbonate 

reservoirs. 

Aptian presalt reservoirs of Brazil's marginal basins are amongst the most 

challenging for oil and gas production due to their geological complexity related to the 

heterogeneity of their lacustrine carbonate facies (Pereira et al., 2013; Szatmari and 

Milani, 2016; Farias et al., 2019; Gomes et al., 2020). For their characterization, a good 

understanding of sedimentological, depositional and post-depositional processes needs to 

be coupled with advanced 3D reservoir characterization techniques leading to accurate 

positioning of wells (Bruhn et al., 2017).  

The majority of published and successful advanced characterization workflows 

applied to Brazilian presalt carbonates involve either the classification of seismic facies 



by neural networks based on seismic attributes (Ferreira et al., 2019a; Ferreira et al., 

2019b; Jesus et al., 2019) or the use seismic inversion methods for petrophysical inference 

(Dias et al., 2019; Figueiredo et al., 2019; Penna et al., 2019). However, these approaches 

are very dependent on seismic data and lack a connection with sedimentological dynamics 

which limits their capacity for accurate facies modeling due to the similar seismic 

responses obtained for several presalt carbonate lithologies. Geological process modeling 

addresses these limitations as this technique can be integrated with geostatistical 

modeling and takes into account sedimentological mechanisms and is not overly 

dependent on seismic data. 

The Búzios Field within the Santos Basin (Figure 1) is a supergiant presalt field 

and is currently the second largest producing field in Brazil, accounting for 26% of total 

presalt productivity and approximately 17% of total national production (ANP, 2021). It 

has a total area of 852.2 km2 and contains an estimated 29 Bbo of reserves, producing 

light oil with 28 gAPI (ANP, 2016). For the first time, this study presents a facies 

reconstruction for the Barra Velha Formation within the Búzios Field. An innovative 

workflow was used that involved the construction of a conceptual sedimentary model 

with the aid of geological process modeling. This conceptual model was then used as a 

secondary input for geostatistical facies modeling. Our objective was to characterize the 

faciological distribution of the Barra Velha Formation across the study area by taking into 

account a conceptual geological model for the sedimentary dynamics that govern presalt 

lacustrine deposition and not relying solely on sparse well data and seismic information. 



 

Figure 1: Location of the Búzios Field within the Santos Basin. 

2.2. Geological Setting 

The Barra Velha Formation represents the end of the rift and sag phases of the 

Santos Basin, which formed during the opening of the South Atlantic ocean during the 

Aptian (Wright and Barnett, 2015). This Formation was first described by Moreira et al. 

(2007) as a shallow lacustrine sequence characterized by intercalations of microbial 

carbonates, stromatolites and laminites in its proximal portion and distal facies of finer 

grained carbonates and shales. The proximal facies were described as being commonly 

reworked into grainstones and packstones containing fragments of stromatolites and 

associated bioclasts. Ephemeral volcanic activity was also present leading to the 

intercalation of mafic igneous rocks with these aforementioned lithologies.  

The structural setting for the development of the paleoenvironment of the Barra 

Velha Formation consisted of a series of distal, N-S to NE-SW rift fault shoulders uplifted 

during the Barremian which led to shallow carbonate sedimentation due to the scarcity of 

siliciclastic sediment input (Gomes et al., 2002, 2008). Mean basin subsidence was 

around 600 m during the Aptian, according to Contreras et al. (2010). 



Szatmari and Milani (2016) suggested that the faults acted as pathways for 

hydrothermal fluids as well as for volcanic activity which together with meteoric waters 

from the continent supplied the shallow lacustrine waters with alkalis such as Ca, Mg and 

SiO2 (Boyd et al., 2015). This favored the deposition of non-marine carbonate facies, 

such as Mg-rich authigenic shales, travertines, stromatolites, grainstones, spherulitic 

packstones and mudstones. In addition, there is evidence of eventual subaerial exposure 

and erosion by wave action. 

The core-based cyclothem succession proposed for the Barra Velha Formation is 

inferred to be controlled by tectonics, lake water level, lake geochemistry and erosional 

processes (Wright, 2012; Wright and Barnett, 2015; Wright and Tosca, 2016). The 

succession consists of an evaporitic/shallowing upwards sequence with basal facies of 

predominantly detrital laminated carbonate muds with the occasional presence of 

spherulites and shrub fragments. These laminated carbonate grade into shallow water 

spherulitic carbonates and stevensite rich lithologies and finally shrub-like carbonate 

facies, all which show evidence of microbial influenced precipitation (Wright, 2012; 

Wright and Barnett, 2015; Wright and Tosca, 2016). 

Farias et al. (2019) analyzed core samples from the upper Barra Velha Formation 

and proposed slightly different facies with a shallowing upwards succession that began 

with freshwater flooding and, therefore a high water table leading to the deposition of 

laminites over a calcite crust from previous cycles. These facies grade into shrub-like 

carbonate deposition, formed in an evaporative phase with a lowered lake water table, 

followed by the deposition of spherulites and stevensite in a desiccation phase with the 

water table below the surface. Stevensite can also occur in protected and evaporative 

shallow lake conditions with high Mg/Si ratio, salinity and pH forming directly from 

water column (Pozo and Calvo, 2018), causing its eventual preservation in some sectors 

as demonstrated by several authors (Saller et al., 2016; Herlinger et al., 2017; de Castro 

and Lupinacci, 2019). 

Gomes et al. (2020) proposed a new facies classification for carbonates of the 

Barra Velha Formation, as well as two facies succession schemes with reservoir rocks, 

deposited on paleo highs, and non-reservoirs rocks deposited basinward. The first facies 

succession scheme is defined by an upward increase in shrub grains, similar to Wright 

and Barnett (2015), suggesting a shallowing upwards cycle in a humid to arid climate 



with fluctuating lake levels. In this succession, the reservoir rocks initially contain an 

abundance of spherulites grains, but they become increasingly dominated by shrubs 

towards the top of the sequence, all with insignificant mud content. The non-reservoir 

rocks show a similar pattern, but they are dominated by mud at the base with increasing 

spherulite grains towards the middle of the succession, followed by increasing shrubs at 

the top of the sequence. The second scheme, similar to Farias et al. (2019), is 

characterized by an upward trend of increasing spherulite content associated with a semi-

arid to arid climate with only minor fluctuations in lake levels. Within this context the 

non-reservoir rocks consist of muds with shrubs grading into spherulite-rich muds 

followed by solely muds abundance at the top of the sequence. For the reservoir rocks, 

the proposed succession begins with shrub grains at the base and grades to spherulitites 

at the top of the sequence with little or no mud. 

As shown by Gomes et al. (2020), Muniz and Bosence (2015) and Neves et al. 

(2019), the basal part of the Barra Velha Formation is dominated by finer-grained facies 

with increasing in-situ carbonate grains towards the top. Generally muddier rocks are 

found at the top of the formation and they represent the Lula marker (V Paul Wright and 

Barnett, 2017; Neves et al., 2019a). These muddier facies were encountered in some of 

the wells drilled across the Búzios Field (Castro and Lupinacci, 2019).  

A number of different authors (Terra et al., 2010; Pereira et al., 2013; Muniz and 

Bosence, 2015; Rezende and Pope, 2015; Wright and Barnett, 2015; Saller et al., 2016; 

Farias et al., 2019; Gomes et al., 2020) have made observations about the variation in 

grain size between different facies of the Barra Velha Formation. The average grain size 

of shrub grains is 2 to 5 mm but they can also reach up to 20 mm in size. Spherulite grains 

are commonly less than 2 mm in size but can also grow to 15 mm. Carbonate muds and 

stevensite usually have grain sizes of less than 125 μm. Dorobek et al. (2012) suggested 

that carbonate deposition rates could have varied from 200 μm to 5 mm per year for the 

Barra Velha Formation. 

At a regional scale, the seismic facies associated with the lacustrine Barra Velha 

Formation carbonates or their African analogs are: (1) carbonate platforms located on the 

flexural margins of faulted blocks and on structural highs with parallel to sub-parallel 

reflectors; (2) mound/build-up shaped reflectors located along the borders of these 

structural highs or on isolated highs; (3) debris or reworked seismic facies with lobate 



geometries located within structural lows adjacent to border faults and (4) deep-water, 

distal, lacustrine facies within structural lows which display parallel to sub-parallel or 

absent reflectors (Buckley et al., 2015; Ferreira et al., 2019a; Jesus et al., 2019; Kattah 

and Balabekov, 2015; Neves et al., 2019; Saller et al., 2016; Zalán et al., 2019) . Some of 

these seismic facies were previously identified in the Búzios Field by Ferreira et al. 

(2019b). 

Saller et al. (2016) observed that that shrubby boundstones and spherulitic 

grainstones with intraclasts are the most common lithologies within the presalt sequence 

of the Kwanza Basin occurring as carbonate platforms and fault-aligned carbonate build-

ups. Isolated carbonate build-ups are dominated by microbial boundstones whilst deep-

water lacustrine facies consist of mudstones with or without the presence of spherulites. 

Liechoscki de Paula Faria et al. (2017) proposed conceptual sedimentological process 

models for the late sag interval of the Barra Velha Formation for an exploration area 

within the Santos Basin. The most successful model was obtained by using a constant 

tectonic subsidence of 0.05 mm/y, a carbonate depositional rate of 0.08 mm/y, and a 

maximum oscillation of around 100 m in the lake level over a period of 2.4 My. This 

model predicted the precipitation of lacustrine carbonate facies laminites, grainstones, 

shrubs/stromatolites, spherulitites and the deposition of mudstones. They concluded that 

for the study area and simulated time, a 100-meter interval of sediments were deposited 

within the context of an arid climate with carbonate precipitation, and that the creation of 

accommodation was mostly controlled by fluctuations in the water level of the lake. 

2.3. Method 

The dataset used in this study consisted of 1036 km2 of 3D post-stack depth 

migrated seismic (PSDM), in addition to well data and lithological logs from 6 wells 

located within the Búzios Field. The well locations and the seismic lines represented in 

this study are shown in Figure 2, as well as the structural contour of the Base of Salt which 

represents the top of the Barra Velha Formation. 



 

Figure 2: Structural map of the Base of Salt of the Búzios Field. The arbitrary sections 

presented in this study are shown as red lines, black circles represent the well locations 

and the stippled blue line represents extent of the seismic volume.  

Carbonate geological process modeling is a methodology that consists of an 

iterative loop where the inputs are: (1) the simulated time interval, (2) an initial and final 

paleotopography that dictates tectonic activity during deposition, (3) a base level curve 

during sedimentation that coupled with the paleotopographic evolution, controls the 

creation of accommodation during the simulation, (4) a carbonate growth rate per year 

for each simulated sediment type which is controlled by lake depth and position and (5) 

modeled sediment properties such as grain size and diameter. The results of the simulation 

are then compared with observed seismic facies (patterns) within the modeled interval 

and the inputs are modified until there is reasonable match between them (Lanteaume et 

al., 2018). The algorithm used for geological process modeling (GPM) is available in the 

Petrel software from Schlumberger and was first developed by Tetzlaff (1987) with later 

modifications by Hill et al. (2009), Tetzlaff and Priddy (2001) and Tetzlaff et al. (2014).  



A time interval of 12 My was used in the simulation, which corresponds 

approximately to the interval over which the Barra Velha Formation was deposited 

according to Wright and Barnett (2015) after Moreira et al. (2007) (Figure 3). Initial and 

final paleotopography and lake base level curve were constructed by applying the iterative 

loop methodology and respecting the Barra Velha Formation lithological trend (Figure 

4). The basal lithologies are indicative of a flooded lake phase that evolved into a 

shallower phase towards the middle of the formation, followed by another flooding phase 

at the top of the formation (Muniz and Bosence, 2015; de Castro and Lupinacci, 2019; 

Neves et al., 2019a; Gomes et al., 2020).  

 

Figure 3: Simplified chronostratigraphic chart for the Santos Basin. The Base of Salt and 

Pre-Alagoas unconformities respectively define the top and base of the studied interval, 

the Barra Velha Formation. Modified from Wright and Barnett (2015) after Moreira et al. 

(2007). 

 



 

Figure 4: Lithological and Compressional Slowness (DTCO) logs for selected wells 

from the Búzios Field.  

The lake base level curve (Figure 5a) was created by a normalization followed by 

multiplication by tectonic operator of compressional slowness (DTCO) log from the 

ANP-1 well. This operator guaranteed a fall in the lake level of 0.05 mm/y in accordance 

with the subsidence rate proposed by Contreras et al. (2010). The initial base level of the 

lake was set at 0 m since our modeling considers the beginning of deposition of the Barra 

Velha Formation as a reference for younger ages. The DTCO log was chosen due to its 

good correlation with lithological variations and consequently with the 

paleoenvironmental tendencies of the Barra Velha Formation. Higher slowness values 

were observed in the basal and uppermost portions of the formation which correlates with 

the prevalence of finer sediments, whilst lower values in the middle of the formation can 

be correlated with dominantly in-situ sedimentation (Figure 4). The high frequency 

variations in slowness values reflect high-order fluctuations in lake levels. 



 

Figure 5: Absolute lake level curve a) and relative lake level b) for the Barra Velha 

Formation paleoenvironment constructed using the compressional slowness log from the 

ANP-1 well. 

Seismic interpretation was undertaken of the 3D seismic volume with mapping of 

principal faults and of the top and bottom of the Barra Velha Formation represented by 

the Base of Salt and Pre-Alagoas unconformities, respectively. Initial and final lake 

paleotopographies were constructed to represent the geomorphology changes during 

deposition of the Barra Velha Formation. This was achieved by using concomitantly the 

lake base level curve and through normalization of the two mapped seismic horizons. The 

Base of Salt unconformity was adjusted by between -210 and -930 m (Figure 6a), for 

creation of initial topography, and the Pre-Alagoas (Figure 6b) unconformity was shifted 

of +5140 m, for creation of final topography, to resemble actual lake bottom bathymetry 

variations during the Aptian. This was undertaken in accordance with a proposed tectonic 

subsidence rate of between 0 to 0.06 mm/y for the Búzios Field (Figure 6c). A relative 

lake level curve was then (or can be) estimated (Figure 5b) which demonstrated that the 

relative lake level varied from between -250 to 250 m. Higher lake levels occurred at the 

beginning and end of the modeled interval of 12 My whilst the lake was lower for 

intermediate ages. 



 

Figure 6: a) Initial lake topography. b) Final lake topography. c) Tectonic subsidence rate 

used for the Barra Velha Formation geological process modeling in the Búzios Field area. 

Four sediment types were simulated during the geological process modeling in 

accordance with the carbonate facies succession proposed by Wright and Barnett (2015). 

Stevensite precipitation in shallow waters was also taken into consideration as proposed 

by Pozo and Calvo (2018). As such, the proposed succession moving from shallower to 

deeper lake waters: Mg-rich clays (stevensite), shrubs, spherulites and fine-grained 

carbonate muds (Figure 7a). The first three sediments occur in up to 20 m deep water 

whilst in the deeper/distal portions of the lake only fine-grained carbonate mud 

sedimentation would take place. The proposed sediment growth multipliers, depend on 



the relative lake level, used for modeling are shown in Figure 7b and Table 1, and display 

the maximum sediment growth rates of millimeters per year. 

 

Figure 7: a) Schematic sediment succession for the Barra Velha Formation used in this 

study and b) proposed growth depth multiplier per simulated sediment depending on 

relative lake level. 

Table 1: Maximum sediment growth rate per millimeter per year used for the geological 

process modeling.  

Maximum sediment growth rates (mm/y) 

Shrubs 0.35 

Spherulites 0.25 

Fine-grained carbonate muds 0.05 

Mg-clays 0.04 

 



We also used an areal carbonate sediment growth scaling for the shrubs, due to 

their inferred dominance in areas where both the Base of Salt and Pre-Alagoas 

unconformities present steeper dips. This dip variation in the seismic horizons occurs at 

the vicinity of faults and where carbonate build-ups architecture seismic facies are more 

present, which may be associated with hydrothermal activity (Figure 8).  

 

Figure 8: Shrubs sediment lake area growth scaling. 

Sediment growth for each simulated time step is a function of the depth dependent 

growth multiplier, areal scaling in the case of shrubs sediment, and maximum sediment 

growth rate. Therefore, each cell from the geological process modeling grid will have a 

mixture of all sediments that could have been deposited simultaneously (Hill et al., 2009). 

Consequently, one of these modeled sediment types would prevail for each lithology 

encountered in the wells from the Búzios Field. That is, laminites contain the highest 

quantities of Mg-rich clays or fine-grained carbonate muds, shrubs are the dominant 

sediment in shrubby carbonates, and spherulite grains are at their most abundant in 

spherulitites.  



Geomorphological evolution is controlled by erosion and downslope sediment 

transport. These processes were modeled as diffusion processes as proposed by Tetzlaff 

and Schafmeister (2007) and are dependent on a global diffusion coefficient for the 

paleoenvironment, sediment grain diameter and a diffusion multiplier that is a function 

of local depth at the time of deposition. The global diffusion coefficient used for the 

simulation was 0.005 m2/y. The grain diameter for each sediment type is given in Table 

2, whilst Figure 9 illustrates the diffusion multiplier by relative lake base level. The 

highest values for the diffusion multiplier are located close to the lake relative base level 

of 0 m, where it can be inferred that wave-action erosion and transport take place. 

However, high values also occur below the relative lake level possibly representing the 

activity of deep water currents, whilst higher values above 0 m represent the action of 

weathering and wind1. When diffusion affects the shrubs or spherulite sediments, they 

become a fifth type of sediment referred to as “reworked sediments” in the simulation. 

Table 2: Grain diameter used for the diffusion process for each simulated sediment. 

Sediment grain diameter (mm) 

Shrubs 2 

Spherulites 1 

Fine-grained carbonate muds 0.002 

Mg-clays 0.001 

 
1 The high diffusion multiplier peaks both above and below 0 meters were placed randomly. 



 

Figure 9: Diffusion multiplier by relative lake base level.  

After sedimentary geological process modeling, a comparison was made with the 

four main seismic facies patterns identified within the interval spanning the Barra Velha 

Formation: carbonate build-ups architecture seismic facies, debris flow seismic facies, 

aggradational or progradational carbonate platforms and lake bottom seismic facies 

(Figure 10)2. The conceptual sediment distribution model was then adjusted to its current 

depth range and thickness, using a depth-depth conversion model to fit it to the depth 

interval between the Base of Salt and Pre-Alagoas unconformities.  

 

Figure 10: Seismic (patterns) facies identified in the Búzios Field area: a) Carbonate 

Build-ups architecture; b) Debris flow seismic facies; c) Aggradational or progadational 

carbonate platforms seismic facies; d) Lake bottom facies. 

 
2 The comparison between the results from the sedimentary geological process modeling and the seismic 

facies was performed manually for the entire seismic cube within the Barra Velha Formation interval. 



Facies reconstruction modeling was undertaken using the geostatistical method of 

truncated Gaussian simulation (Pyrcz and Deutsch, 2014; Beucher and Renard, 2016; 

Ferreira and Lupinacci, 2018; Peçanha et al., 2019). Sediment proportion volume cubes 

were estimated from the results of the geological process modeling and applied as trends 

for each facies described in the wells. It is important to highlight that sediment proportion 

volumes for the finer simulated sediments were merged since they are represented in the 

lithological logs by the same rock type, laminites.  

The first step in this process was the upscale of lithological logs to a grid with a 

cell size of 100x100x5 m (x, y, z) constructed between the Base of Salt and Pre-Alagoas 

surfaces. A unique experimental Gaussian semi-variogram in the N-S direction was 

created with 8000 and 3000 m as the major and minor horizontal ranges, and a vertical 

range of 10 m. Sediment proportion volume cubes were inserted as secondary variables 

for each facies and geostatistical modeling was performed.  

The sediment proportion volumes used as trends for geostatistics contribute in the 

following manner; a global facies probability of occurrence for each modeled facies at 

each grid cell is calculated by multiplying the values of sediment proportion used for that 

specific facies with the global facies fraction estimated from the upscaled lithological 

well logs, and then dividing this value by the mean value of the sediment proportion 

volume related to that facies. 

Well 944A was excluded from the modeling process so that it could be used as 

quality control for the facies reconstruction results. The proposed workflow for the 

geological process modeling and facies reconstruction modeling is illustrated in Figure 

11.  



 

Figure 11: Integrated workflow for the geological process and facies reconstruction 

modeling. 

2.4. Results 

Seismic sections were used to make comparisons between the observed seismic 

patterns, the results of the carbonate geological modeling process and the results of the 

facies reconstruction using geostatistics (Figure 132-Figure 14). Figure 12 presents a N-

S oriented seismic section which is sub-parallel to the principal direction of syn-rift 

faulting of the Santos Basin. An E-W orientated seismic section, perpendicular to 

faulting, is presented in Figure 13, and Figure 14 shows a NW-SE orientated seismic 

section, also sub-parallel to faulting. Figure 15 shows a 3D view of the results of the 

geological process modeling for four-time steps taken from the modeled 12 My time 

interval. 



 

Figure 12: Results represented across arbitrary section line AB1 (location shown in Figure 

2) for a) interpreted seismic section, b) carbonate geological process modeling and c) 

facies reconstruction using truncated Gaussian simulation with sediment proportion 

volumes as trends and lithology logs from wells (RWD – reworked sediments, SHR – 

shrubs, SPH – spherulites and FGM – fine-grained muds). 



 

Figure 13: Results represented across arbitrary section AB2 (location shown in Figure 2) 

for a) interpreted seismic amplitude volume, b) carbonate geological process modeling 

and c) facies reconstruction using truncated Gaussian simulation with sediment 

proportion volumes as trends and lithology logs from wells (RWD – reworked sediments, 

SHR – shrubs, SPH – spherulites and FGM – fine-grained muds). 



 

Figure 14: Results represented across arbitrary section AB3 (location shown in Figure 2) 

for a) interpreted seismic amplitude volume, b) carbonate geological process modeling 

and c) facies reconstruction using truncated Gaussian simulation with sediment 

proportion volumes as trends and lithology logs from wells (RWD – reworked sediments, 

SHR – shrubs, SPH – spherulites and FGM – fine-grained muds).  

The carbonate geological process modeling in the sections (Figure 12b, Figure 

13b and Figure 14b) and 3D view (Figure 15) show the predominance of fine-grained 

carbonate mud sediments, both in both the basal and uppermost portions of the Barra 

Velha Formation. In contrast the middle of the formation is dominated by in-situ 

carbonate sedimentation, with shrubs and spherulites. This corroborates with the high 

relative lake levels at the top and bottom of the simulated depositional interval, and the 

lower lake levels in the middle of the interval. This suggests that the creation of 



accommodation and style of sedimentation were mostly governed by the fluctuations in 

lake level rather than by tectonic subsidence. 

 

Figure 15: Geological process modeling results at a) 125 Ma, b) 121 Ma, c) 117 Ma and 

d) 113 Ma. Mean model (sediment) thicknesses for each time-step are: b) 104 m, c) 108 

m and d) 258 m.  

The seismic patterns observed in the seismic sections (Figure 12a, Figure 13a and 

Figure 14a) indicate that aggradational or progradational carbonate platforms are 

common on the flat or gently-dipping ramps of the structural highs. The most abundant 

sediments in these areas are either spherulites or intercalations of spherulites and shrubs. 

Spherulite and shrub sediments are also observed on the edges of the structural highs or 

in local highs, where domed-shape carbonate build-ups architectures are common or 

where the presence of clinoforms indicates the progradation of carbonate platforms. A 

greater proportion of shrubs sediments are present in the western portion of the Búzios 

Field. Reworked sediments, the product of diffusion, are also common especially in the 

structural lows near the fault borders where they are probably the result of the collapse of 

carbonate platforms and build-ups or wave erosion. The volume of reworked sediments 



was underestimated by the geological process modeling especially when considering their 

common occurrence in wells such as well 1184 (Figure 4). 

Muddier sedimentation, especially in the uppermost part of the formation, could 

be related to the deposition of Mg-rich clays in isolated structural lows within the main 

structural high of the study area. On the other hand, the muddier sediments found in the 

connected structural lows, where lake bottom seismic facies are also observed, were 

predominantly fine-grained carbonate muds. The carbonate geological process modeling 

indicates that the sediments at the well the locations are mostly spherulites with, less 

abundant intercalations of shrub sediments; a result that correlates well with the 

lithological logs shown in Figure 4.  

The results of the truncated Gaussian simulation for facies reconstruction are 

presented in sections (Figure 12c, Figure 13c and Figure 14c) as a projection over the 

Base of Salt unconformity (Figure 16) and in a sliced 3D view (Figure 17). We used the 

sediment proportion volumes obtained from the carbonate geological process modeling 

as trends for facies reconstruction modeling. It is important to note that the upscaled 

lithological log from well 994A which was used as quality control, had a good Spearman 

correlation of 74% with the results of facies reconstruction along the well's trajectory. 

Spherulitites are the dominant lithology at structural highs and in places are 

intercalated with shrubby carbonates, especially in the western part of the study area. This 

corroborates with the conceptual sedimentary modeling and, consequently with the 

expected rock types for each seismic pattern observed in the study area. Also, in 

accordance with the geological process modeling, laminites are dominant in the basal 

portion of the formation in both the structural highs and lows. However, the muddier 

sediments present in the upper section are not as thick in the facies reconstruction, except 

in isolated lows within the structural highs which are possibly related to the deposition of 

Mg-rich clays. 



 

Figure 16: Results for facies reconstruction modeling in map view over the Base of Salt 

surface in the Búzios Field. White circles represent the well locations. 



 

Figure 17: Results for facies reconstruction in 3D sliced view for the Búzios Field. Black 

lines represent the well traces. 

The facies reconstruction shows high volumes of reworked sediments within 

structural lows near faults especially in western portion of the study area. This is possibly 

due to the use of the lithological logs from wells 1184 and 1195 as inputs for the 

geostatistics. However, in general the presence of reworked sediments was 

underestimated in the results of the geological process modeling. It is important to 

mention that the majority of the wells were sited in structural highs and both the 

lithological logs and the results facies reconstruction indicate that at those locations 

spherulitites intercalated with shrubby carbonates predominate, except for well 1184 

which was drilled in a fault border where reworked facies predominate. The Barra Velha 

Formation facies succession is very well represented throughout the whole study area by 

the facies reconstruction results which show a shallowing upwards cycle from laminites 

at the base, transitioning to spherulitites followed by shrubby carbonates and culminating 

with laminites again. 



2.5. Discussion 

As stated by Della Porta (2015), there is still a lack of knowledge regarding the 

sedimentary processes that govern non-marine carbonate precipitation. Since they occur 

as a variety of types which are intrinsically related to the environment in which they form, 

they usually have specific geomorphological, geochemical and hydrologic characteristics. 

These unique genetic characteristics make them very different from marine carbonates in 

terms of origin and sedimentary dynamics (Alonso-Zarza and Tanner, 2010). 

Consequently, it would not be productive to compare our results to forward 

stratigraphic modeling studies of marine carbonates such as the ones developed by Berra 

et al. (2016), Guerra (2016) and Lanteaume et al. (2018). One of the main reasons for this 

is the use of global sea level curves, such as Haq (2014), as the base level curve for these 

studies. Global sea level curves cannot be used for lacustrine environments since their 

base level is mostly influenced by variations in rainfall, surface flow and groundwater 

levels rather than sea level changes (Gierlowski-Kordesch, 2010). 

Therefore, we can only compare our results with the work of Liechoscki de Paula 

Faria et al. (2017), which presented sedimentary models constructed for the upper section 

of the Barra Velha Formation at another presalt field in Santos Basin. It should be 

highlighted that any stratigraphic forward model is a simplification of the real geological 

environment, so no model can be regarding as a definitive statement on the dynamics of 

a depositional system (Burgess, 2006). The first point of comparison is methodological 

since Liechoscki de Paula Faria et al. (2017) did not integrate forward stratigraphic 

modeling with geostatistics for facies reconstruction of the presalt carbonates, as was 

undertaken in our study. Liechoscki de Paula Faria et al. (2017) used sedimentary 4D 

modeling solely and specified a constant subsidence rate for tectonic control across the 

whole area, as well as a single maximum growth rate of for all of the modeled carbonate 

facies with a growth multiplier per depth for the in-situ carbonate facies down to a depth 

of 80 m. The methodology presented in this study increases the level of complexity for 

the application of forward stratigraphic modeling to presalt carbonates since it is 

integrated with geostatistics permitting greater correlation with well lithological data. The 

forward stratigraphic modeling undertaken in this study is more complex in a number of 

aspects as parameters were introduced that take into consideration variations in tectonic 

activity across the Búzios Field, different maximum growth rates for carbonate deposition 



for each of the modeled sediments as well as the addition of an areal growth scaling map 

as input for shrub precipitation to address its occurrence in the vicinity of faulting where 

hydrothermal activity is higher.  

For the schematic sediment succession, we also considered that in-situ carbonate 

sediment precipitation is limited to shallower depths down to only 18 m. Our lake base 

level curve was derived from the DTCO well log for well ANP-1, whereas in the work of 

Liechoscki de Paula Faria et al. (2017) the lake level oscillation curves were derived from 

the carbonate lithological succession described in the wells. 

The results obtained in this study can be compared with the best-fit model for their 

study area as selected by Liechoscki de Paula Faria et al. (2017). Their model and our 

proposed model are similar for the upper section of the Barra Velha Formation with both 

indicating the dominance of shrubby carbonates, presented as a stromatolite facies in their 

work. These carbonates mostly occur along the edge of structural highs associated with 

reworked sediments, which were presented as grainstones in their work. Fine grained 

laminite facies are dominant at the top of the formation, possibly related to occurrence of 

the Lula marker (V Paul Wright and Barnett, 2017; Neves et al., 2019a).  

Our study is the first to forward model the entire Barra Velha Formation, which 

allowed us to analyze the paleoenvironmental evolution across the entire depositional 

interval. We observed that muddier facies dominate the lower section of the formation 

whilst the middle section is mainly dominated by in-situ carbonate rocks. Another 

contrast with Liechoscki de Paula Faria et al. (2017) is the occurrence in their model of 

spherulitic carbonates as deeper and low energy facies. This result reflects that in their 

study it was considered that the spherulites precipitate in the range from 25 to 80 m deep. 

In our results, laminites predominate in the deeper regions since we considered spherulite 

precipitation to only occur in shallower conditions3 ranging from 7 to 20 m. 

Other advanced 3D reservoir characterization workflows have previously been 

applied to the Barra Velha Formation with evaluation based mostly on seismic attribute 

data and machine learning approaches such as those presented by Ferreira et al. (2019a), 

Ferreira et al. (2019b) and Jesus et al. (2019). These studies were successful in 

 
3 It is important to note that the lower range for the precipitation of in-situ carbonate sediments in our study 

may be overestimating the predominance of laminites in the basal part of both our 4D sedimentary and 

facies reconstruction models. 



discriminating presalt seismic facies such as carbonate build-ups/mounds, carbonate 

platforms and debris seismic facies. However, they could only infer the relationship of 

these seismic facies with lithological facies. This limitation is addressed in our modeling 

as we were able to not only correlate seismic facies with lithological facies but also with 

the dominant sediment types. Other limiting factors for these previous studies are the 

inherent difficulties in differentiating seismic facies associated with muddier lithological 

facies, as well as the poor resolution since seismic based methodologies are restricted by 

seismic resolution.  

All modeling processes are attempts to reproduce the factual geology and as such 

they are always uncertain to some extent. In our geological process modeling results, it is 

inferred that sediment production was mainly controlled by water depth with only minor 

tectonic influence. This was the case for all sediment types except for shrub grains, for 

which an areal growth scaling map was also used as input for the simulation. This 

addressed the possible influence of hydrothermal activity in the vicinity on the production 

of shrub grains as suggested by Wright (2012), Wright and Barnett (2015), Wright and 

Tosca (2016), Saller et al. (2016) and Szatmari and Milani (2016). 

A number of these aforementioned authors (e.g., Wright and Barnett, 2015, 2020; 

Szatmari and Milani, 2016), proposed that water geochemical dynamics played an 

important role in carbonate sediment precipitation in the presalt lacustrine 

paleoenvironment. However, this type of modeling was still not available in the algorithm 

used in this study for forward sedimentary modeling and consequently has not been 

considered in our modeling results. Nonetheless it is again worth noted that the areal 

scaling of shrub precipitation was included in the modeling process to account for 

differences in salinity or temperature caused by the interaction of hydrothermal fluids 

with the lake waters.  

In addition, we acknowledge that there are some uncertainties related to the 

parameters used in the geological process modeling, especially for the lake base level 

curve and diffusion. It is difficult to calculate the real range and behavior of the lake base 

level curve and as such it could only be inferred after several simulation trials4. This is 

 
4 Also, we would like to knowledge that there is some level of uncertainty associated to the used of the 

DTCO curve having as perspective that it correlates with the lithology logs from the available wells since 

the compressional slowness can also be affected by diagenetic effectes interfering on its used to derive a 

lake base level curve that should be related to the sedimentary process solely. 



also the case for the diffusion parameters which relates to the erosion and transport of 

sediments. Intuitively, this parameter should be higher at the water-air interface but not 

as high for deep lake currents and windy layers, however the depths of occurrence of 

these latter processes are difficult to estimate. For that reason, they were randomly placed 

as high value peaks in the diffusion multiplier both above and below and water surface (0 

m). 

Regarding the results of facies reconstruction, it was only possible to infer where 

laminites are composed mainly of deep water, fine-grained carbonate muds or of shallow 

water Mg-rich clays. This was because there is no differentiation between deep water and 

shallow water laminites in the lithological logs. Finally, we can infer from our results that 

greater wave action and hydrothermal activity in the western portion of the Búzios Field 

can be correlated with greater quantities of reworked facies in the structural lows and 

shrubby carbonate facies near faulted borders, respectively.  

2.6. Conclusions 

The application of an innovative integrated workflow of geological process 

modeling combined with geostatistical facies reconstruction by using a truncated 

Gaussian simulation to characterize the presalt carbonates of the Barra Velha Formation 

in the Búzios Field proved to be very effective. We achieved a better understanding of 

the sedimentological processes that govern the distribution of lithological facies within 

the Barra Velha Formation.  

The correlation of seismic data with the integrated analysis of the geological 

process modeling and the results of the facies reconstruction successfully explained: 1) 

the seismic pattern of carbonate build-ups architecture, which occur at structural highs 

near fault borders or on isolated highs and are composed by in-situ carbonate grain 

sediments namely spherulites and shrubs leading to the intercalation of spherulitites and 

shrubby carbonate lithofacies; 2) the aggradational/progradational carbonate platform 

seismic pattern, which is observed on flat or gently dipping ramps of the structural highs 

and for which the dominant sediment type is spherulites as well as intercalation of those 

with shrubs in parts; 3) the debris facies seismic pattern, which occurs at the structural 

lows near fault borders and is dominated by reworked sediments and facies and 4) the 

lake bottom seismic facies which occurs within both connected and isolated structural 



lows associated with dominantly fine-grained carbonate muds or Mg-rich clays forming 

laminite deposits.  

The Barra Velha Formation chronostratigraphic lithological trend consists of a 

muddier basal succession that develops into a middle succession with the predominance 

of in-situ carbonates that becomes muddier towards the top of the formation. The results 

of the geological process modeling also suggest that oscillation of the lake base level 

curve had a greater influence than tectonic activity on sedimentation within the Barra 

Velha Formation. The western portion of the Búzios field presents greater quantities of 

shrubby carbonates on the structural highs, with reworked facies in the structural lows 

near fault borders. In contrast, the eastern portion is dominated by spherulitites often 

intercalated with shrubby carbonates. 

The geological process modeling underestimated the impact of diffusion on the 

transport and reworking of sediments. However, this limitation was resolved during facies 

reconstruction through the use of lithological data from well logs. Facies reconstruction 

could only infer whether laminites facies were associated with Mg-rich clays or fine-

grained carbonate muds as these sediment types were not differentiated in the lithological 

logs. Spherulitites, shrubby carbonates and reworked sediments were the most common 

lithologies encountered in wells and the facies reconstruction was able to satisfactorily 

represent the lithologies encountered in the quality control well 944A. Finally, we 

acknowledge the limitations of the proposed approach with a number of uncertainties 

identified in relation to modeling of water geochemical dynamics in addition to the 

estimation of the lake base level curve and diffusion parameters. 
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Abstract 

This paper presents the application of an unsupervised neural network to classification of 

seismic facies based on a unique combination of stratigraphic and structural seismic 

attributes. This classification was integrated with statistical analysis of the porosity and 

permeability of the seismic facies which permitted the advanced reservoir 

characterization of the presalt carbonate reservoirs of the Barra Velha Formation in the 

Buzios Field, Santos Basin. This advanced approach is required due to the high degree of 

heterogeneity and complexity these reservoirs, which directly impacts on their porosity 

and permeability. Preconditioning of the seismic data was essential for filtering random 

and structurally oriented noise prior to the generation of seismic attributes. Four seismic 

attributes: acoustic impedance, rms amplitude, local flatness and principal dip 

component, were selected as the inputs for the unsupervised classification based on their 

capacity for differentiating between the observed seismic patterns within the Barra Velha 

Formation. Principal component analysis was then performed to decrease redundancy of 

the input seismic attribute data prior to classification. The analysis of amplitude seismic 

features as well as of the classification results allowed the identification of three different 

seismic patterns within the study area: build-ups, debris and aggradational/progradational 

carbonate platforms. The seismic attribute of principal dip component proved to be crucial 

for distinguishing between carbonate build-ups and debris seismic facies. Our results 

demonstrated that the build-up and debris seismic facies are commonly occur aligned 



with faults, display higher porosity and permeability and as such they are inferred to be 

the best reservoirs. 

3.1. Introduction 

In recent years, the presalt carbonates from marginal Brazilian basins have gained 

worldwide recognition due their importance as the principal reservoirs of a number of 

giant fields. As of August 2020, these reservoirs were producing 2.2Mbo/day which 

represents 98% of the production from the Santos Basin, the most prolific Brazilian oil 

and gas basin (ANP, 2021). 

The Barra Velha Formation represents the uppermost section of the presalt 

carbonates within the Santos Basin and was deposited within an alkaline-lacustrine 

paleoenvironment during the late rift and sag phases of the Aptian (Moreira et al., 2007; 

Wright and Barnett, 2015). Carbonate precipitation occurred mainly controlled by 

chemical processes (Wright, 2012; Wright and Barnett, 2015; Wright and Tosca, 2016; 

Wright and Barnett, 2017) and rift faults, that acted as paths for hydrothermal vents, as 

well as meteoric water, that lixiviated the surrounding basaltic terrains, both fed the 

lacustrine waters with alkalis and CO2 (Szatmari and Milani, 2016).  

The Barra Velha Formation (Fm.) is typically composed of varying proportions 

of different sediments:  shrubs, spherulites, carbonate muds and Mg-rich clays. Lithotype 

classification varies depending on the origin and composition of the component sediments 

but lithotypes can be divided into three main groups: mudstones, in situ carbonates and 

reworked carbonates (Terra et al., 2010; Pereira et al., 2013; Rezende and Pope, 2015; 

Wright and Barnett, 2015; Farias et al., 2019; Gomes et al., 2020). In situ carbonate rocks 

represent the proximal lacustrine facies and are represented by shrubby carbonates, 

spherulitic carbonates and laminites which may all be reworked into grainstones.  

Mudstones represent the distal (deep water) facies of the Barra Velha Formation. It should 

also be highlighted that volcanic rocks occur in places intercalated with these lacustrine 

lithologies (Fornero, Marins, Lobo, Freire, and E.F. de Lima, 2019; Penna and Lupinacci, 

2020). 

The seismic patterns associated with the lacustrine carbonates of the Barra Velha 

Fm. are: (1) carbonate platforms on structural highs with parallel to sub-parallel 

reflectors; (2) carbonate build-ups with convex-up concordant internal reflections either 

along the footwalls of normal faults or on isolated highs, (3) debris or reworked seismic 



facies on the hanging wall side of normal faults characterized by clinoform geometries 

and (4) deep lake facies within the structural lows with weak parallel to sub-parallel or 

absent reflectors (Buckley et al., 2015; Kattah and Balabekov, 2015; Saller et al., 2016; 

Ferreira et al., 2019a; Jesus et al., 2019; Neves et al., 2019; Zalán et al., 2019). 

Due to the complex depositional history and compositional heterogeneity of the 

Barra Velha Fm., advanced techniques are required for reservoir characterization 

combined with robust analysis and interpretation sustained by an in-depth understanding 

of conceptual depositional models (Johann et al., 2012; Johann, 2013; Bruhn et al., 2017). 

An effective and promising advanced technique for the characterization of seismic facies 

within presalt carbonate reservoirs is unsupervised classification by a multi-attribute 

neural network. Johann et al. (2012) proposed a methodology based on self-organized 

maps with the use of seismic attributes as inputs for the unsupervised classification of 

seismic facies in a presalt reservoir area. Their results indicated a good correlation 

between the best classified facies and well placement. 

Jesus et al. (2019) also adopted a similar approach through the use of a neural 

network to undertake unsupervised seismic classification which resulted in the effective 

mapping of individual geobodies representing the carbonate mounds within a presalt 

field. These authors also employed a self-organizing maps methodology with the inputs 

being the seismic attributes of coherence, curvature and hybrid spectral decomposition 

within the Barra Velha Formation interval. Ferreira et al. (2019a) used a k-means 

clustering approach with envelope and acoustic impedance as stratigraphic attributes and 

high resolution eigen coherence as a structural attribute for unsupervised seismic facies 

classification in a presalt field located on the Outer high of the Santos Basin. Their results 

allowed the differentiation and mapping of aggradational/progradational carbonate 

platforms, carbonate build-ups and debris seismic patterns throughout the study area. The 

carbonate build-up seismic facies were inferred as having the highest porosity and 

permeability with well information.  

The Buzios Field is a giant oil field operated by Petrobras is the second largest 

Brazilian oil field and is located within the Santos Basin (Figure 18). This field accounts 

for 26% of the total production from the Santos Basin, with total estimated oil reserves 

of approximately 30 Bbo (ANP, 2016, 2021). Castro and Lupinacci (2019) performed a 

petrophysical evaluation of reservoirs within the Barra Velha Fm. and the Itapema Fm 



encountered within a well drilled in the Buzios Field. They highlighted the presence of 

fine grains intercalated with carbonate rocks that have a negative impact on reservoir 

quality. They proposed a division of the Barra Velha Formation sag phase into a lower 

and upper sag with the lower section being characterized by a greater stevensite clay 

content. They established that the mean effective porosity for the Barra Velha Fm. was 

around 8% in the studied area.  

Dias et al. (2019) performed an acoustic inversion of both the Barra Velha and 

Itapema Formations across the Buzios Field aiming to infer the relationship between 

acoustic impedance and porosity. They identified, a strong correlation between these two 

properties for the Barra Velha Formation, however two main trends were observed. One 

for the upper sag and upper rift sections, and another for the lower sag section, due to the 

presence of stevensite clays in the lower interval.  

Ferreira et al. (2019b) proposed a multi-attribute, unsupervised neural network 

classification of the Barra Velha Formation interval within the Buzios Field. They were 

able to individualize carbonate build-ups and aggradational/progradational carbonate 

platform seismic patterns. However, the debris facies could not be discriminated from the 

other seismic facies using the selected seismic attributes. 

In this paper, we propose the use of an unsupervised artificial neural network 

algorithm to perform seismic facies classification based on a unique combination of 

stratigraphic and structural seismic attributes. This classification is then integrated with 

porosity and permeability logs from the Barra Velha Fm. to improve the efficiency of 

reservoir characterization within the Buzios Field. By doing so, we aimed to effectively 

identify and individualize three seismic patterns – build-ups, carbonate platforms and 

debris – and also assess their reservoir potential without the need for geostatistical 

modeling. 



 

Figure 18: Location of the Buzios Field within the Santos Basin. 

3.2. Method 

The data available for this study consists of 770 km2 of 3D post-stack depth 

migrated seismic (PSDM) and porosity and permeability well logs from 15 wells within 

the Buzios Field. We mapped the base of salt (upper Aptian age) and the Pre-Alagoas 

(lower Aptian age) unconformities – that represent, respectively, the top and bottom of 

the Barra Velha Fm. interval. The main faults were also mapped across the study area. 

Figure 19 shows the data coverage across the study area including well location, depth 

contours of the base of salt unconformity and the location of the seismic sections are 

presented in this study. 



 

Figure 19: Map view of the base of salt interpreted seismic horizon (depth contours) 

across the Buzios Field (black polygon) with the coverage of the 3D Seismic data shown 

by the green rectangle and well locations shown by black circles. The red lines show the 

location of the arbitrary seismic lines (AB1 and AB2) presented in this study. 

Our methodology can be divided into two stages: (1) identification of the principal 

seismic patterns and selection of the seismic attributes to be used as input for the (2) 

neural network unsupervised seismic facies classification and integration with 

permeability-porosity evaluation. A simplified methodology flowchart is presented in 

Figure 20. 



 

Figure 20: Simplified methodology flowchart. 

Identification of the principal seismic patterns and selection of seismic attributes 

Prior to the identification of the main seismic patterns and selection of the seismic 

attributes to be used as inputs for the neural network classification, preconditioning of the 

seismic data was undertaken. This was achieved through the use of a structural smoothing 

filter (Hale, 2009) to reduce the influence of structurally oriented noise followed by a 

median filter (Huang et al., 1979) to reduce random noise. The resulting combination of 

these two filters was effective for partial removal of both oriented and random noise thus 

increasing the signal-to-noise ratio (Figure 21). 



 

Figure 21: Preconditioning to remove random and structurally oriented noise effects. a) 

Original seismic data; b) Preconditioned seismic data.  

Carbonate build-ups, debris and aggradational/progradational carbonate platforms 

are the principal seismic patterns identified within the Barra Velha Fm. in the study area. 

Their characteristics were analyzed in the original seismic volume to build a conceptual 

geological model which was used to guide later interpretation of the seismic facies 

obtained by the unsupervised neural network classification (Figure 22). 

We analyzed the response of several seismic attributes5 as extracted from the 

preconditioned seismic data based on amplitude, phase and frequency or a combination 

of these components to identify stratigraphic and structural characteristics that could be 

used to differentiate and map the seismic patterns in the study area, as proposed by 

Ferreira et al. (2019a); Ferreira et al. (2019b) and Jesus et al.(2019). 

We chose two stratigraphic seismic attributes and two structural seismic attributes 

as inputs for the unsupervised classification:  

 
5 The seismic attributes that had their feasibility analyzed for this study included coherence, 3D curvature, 

chaos, spectral decomposition, relative acoustic impedance, consistent dip, amongst others. However, we 

chose the ones cited in the thesis and published paper based on their qualitative capacity to discriminate the 

seismic facies identified in the original amplitude volume. It is also important to highlight that many of the 

tested seismic attributes somewhat correlated to one of the ones for the analysis. 



• Acoustic impedance stratigraphic attribute, which usually correlates well with 

lithological signatures and was obtained using the inversion algorithm proposed by 

Russell and Hampson (1991, 2006) and Barclay et al. (2008); 

• Rms amplitude stratigraphic attribute, extracted using the method proposed by Taner 

et al. (1979) and which is sensitive to abrupt changes in acoustic impedance; 

• Local flatness structural attribute that maps the flatness of reflectors, that are not 

necessarily horizontal, thus revealing vertical anomalies (Randen and Sønneland, 

2005; Pereira, 2009); 

• Principal dip component structural attribute (Randen et al., 2000) that calculates the 

principal eigenvector normal to the local dip, thus revealing a smoothed dip gradient 

of reflectors.  

The stratigraphic and structural characteristics highlighted by the seismic 

attributes for each of the identified seismic patterns is shown n Figure 22. The expression 

of these attributes along an individual seismic trace extracted along the trajectory of the 

ANP-1 well, is shown in Figure 23.  

Carbonate build-ups are characterized by domical shaped reflectors and chaotic 

internal reflectors with high local flatness values highlighting internal discontinuities. The 

carbonate build-ups present low to intermediate rms amplitude values related to the 

intercalation of a few high amplitude internal reflectors. This corroborates with acoustic 

impedance which usually presents low to intermediate values for this seismic pattern. The 

principal dip component shows a variation between high and low dips, probably related 

to internal chaoticity. 

The debris seismic pattern displays a clinoformal shape in the seismic amplitude 

volume and can often display chaotic internal reflectors. This pattern is characterized by 

high local flatness values whilst the values for  rms amplitude and acoustic impedance 

are low, indicating only minor intercalation of lithologies. Intermediate to high values are 

obtained for the principal dip component attribute as expected for a dipping seismic 

pattern which occurs in faulted areas. 

In the seismic amplitude volume, the aggradational/progradational carbonate 

platforms are characterized by an intercalation of parallel to sub-parallel reflectors with 

onlap and downlap truncation where progradations occur. Low local flatness values 

indicate good reflector continuity. Both the rms amplitude and acoustic impedance 



attributes display an intercalation of high and low values, suggesting a reasonable degree 

of lithological variation. The principal dip component attribute shows very low values 

across carbonate platforms corroborating with the horizontal continuity observed in the 

seismic amplitude volume.  

 

Figure 22: Principal seismic patterns identified within the Barra Velha Fm. interval - 

Typical seismic amplitude for a) carbonate build-ups (IL4710), b) debris and c) 

aggradational/progradational carbonate platforms as observed within IL4710, XL3804 

and IL4186 respectively. Note: IL - Inline, XL - crossline. Selected seismic attributes for 

the same seismic patterns: local flatness in d), e) & f); rms amplitude in g), h) & i); 

principal dip component in j), k) & l), and acoustic impedance in m) n) & o).  



 

Figure 23: Seismic trace expression for each of the selected attributes used as input for 

the unsupervised neural network seismic facies classification. The seismic trace was 

extracted along the ANP-1 well trajectory within the Barra Velha Fm. interval. From left 

to right, preconditioned seismic trace, local flatness, rms amplitude, principal dip 

component and acoustic impedance. 

Unsupervised Neural network seismic facies classification integrated with 

permeability-porosity evaluation 

The neural network technique was first developed by McCulloch and Pitts (1943), 

based on the dynamics of brain learning process where the input of external stimulus 

activates a specific groups of neurons based on their affinity to that type of stimulus. As 



defined by Du and Swamy (2014), the output of each neuron in given by the following 

equation: 

y = ϕ (∑ wixi − θ

J1

i=1

), 4.1 

where y is the output of a neuron, wi is the link weight from the xi input, θ is a threshold 

or bias, J1 is the total number of inputs and ϕ(. ) is the activation function that is usually 

a continuous or discontinuous function between the interval of (-1,1) or (0,1). 

Prior to the unsupervised classification, a principal component analysis was 

performed using the seismic attribute volumes as input. This linear transformation aims 

to create principal component volumes or major variance direction volumes to be used as 

inputs in the neural network, therefore reducing redundancy (Hotelling, 1933; Zhao et al., 

2015). As defined by Zhao et al. (2015), the first principal component is extracted from 

the sample space composed of the seismic attribute volumes given as inputs and best 

represents the seismic attribute patterns. The first principal component is then subtracted 

from the original sample space and another principal component is extracted from the 

residual sample space. This process continues until the number of principal components 

generated from the sample space is equal to the dimensions of the original sample space. 

For our work we used all four principal component volumes generated from the selected 

seismic attributes sample space as inputs for the unsupervised neural network. 

A multi-layered perceptron network with lateral connections for inhibition 

architecture and competitive learning method (Russell and Norvig, 2010; Du and Swamy, 

2014) was used in this study to discriminate between the five different seismic facies. 

Competitive learning is based on the clustering principle, where input data is subdivided 

into a number of user defined clusters according to data similarity identified by the 

algorithm. We defined the ideal number of facies as 7 after a series of trial and error 

attempts with 3 to 10 facies.  

The seismic facies classification volume was analyzed for greater geological 

understanding and the classified facies were then manually grouped into 3 classes (build-

up, debris and aggradational/progradational carbonate platforms) in accordance with the 

seismic patterns identified in amplitude seismic data. The ideal number of facies and 

grouped facies classes was chosen based on the capacity of these two steps to differentiate 



between facies and map the different seismic patterns identified by stratigraphic analysis 

of the original seismic data. 

The unsupervised classification volume was then used to build probability of 

occurrence and zonation maps for the seismic patterns in the study area. These maps 

allowed the identification and delimitation of the most likely occurrences of each of the 

classified facies within the Barra Velha Fm. interval. Total porosity and permeability 

histograms and cross-plots were generated for each of the seismic facies based on the 

available well log information to qualitatively evaluate their reservoir potential within the 

Buzios Field. 

3.3. Results and Discussions 

The evaluation of the identified seismic patterns and the results of the seismic 

facies classification are presented as seismic sections in Figure 24 and Figure 25, in map 

view projected over the base of salt unconformity in Figure 26 and as a sliced 3D view in 

Figure 27. 



 

Figure 24: Preconditioned seismic section (a) from the 3D seismic volume along arbitrary 

line 1 (AB1) with the values of b) the local flatness attribute c) the rms amplitude 



attribute; d) the principal dip component; e), the acoustic impedance attribute for the 

Barra Velha Formation; f) results of the seismic facies classification of the Barra Velha 

Fm overlain on the filtered seismic data. Well paths are shown by the yellow or white 

lines and faults by the black lines. As can be noted, build-ups are mostly concentrated on 

the footwall side of normal faults and are laterally associated with the debris seismic 

facies which tend to occur on the hanging wall side of faults. 

 

Figure 25: Preconditioned seismic section (a) from the 3D seismic volume along arbitrary 

line 2 (AB1) with seismic attributes shown for the Barra Velha Formation interval: b) 

local flatness attribute; c) rms amplitude attribute; d) principal dip component attribute; 



e) acoustic impedance attribute and f) the results of the seismic facies classification for 

the same interval. Faults are shown by black lines and well paths by the yellow or white 

lines. It should be noted that the aggradational/progradational carbonate platforms are the 

dominant seismic facies in stable areas of structural highs away from their faulted 

margins. 

 

Figure 26: The results of the seismic facies classification presented in map view over the 

base of the salt unconformity (top of the Barra Velha Fm.) shown. Well locations are 

represented by the white circles and the black polygon shows the limits of Buzios Field. 



 

Figure 27: Sliced 3D view of the results of the seismic facies classification across the 

study area. Well paths are shown by the black lines. The build-up and debris seismic 

facies are more common within the western part of the Buzios Field associated with major 

faulting. 

Aggradational/progradational carbonate platforms are the dominant seismic facies 

across the Buzios Field, in particular on structural highs away from faulted areas, within 

local structural lows and in the deeper portions of the study area. As expected, these 

seismic facies display high local flatness values related to subhorizontal reflectors and the 

intercalation of contrasting reflectors as evident in both the rms amplitude and acoustic 

impedance. These characteristics and associated seismic attributes were essential for the 

delimitation of this seismic facies by the unsupervised neural network. 

We can infer that the carbonate platform seismic facies commonly contain 

intercalations of different lithologies; likely to be represented by low scale shrubby 

carbonates, spherulitic carbonates and laminites. It is expected that the shrubby and 

spherulitic carbonates would be more common on the structural highs, with laminites 

within local structural lows and in the deeper parts of the Barra Velha Formation. 

Build-up seismic facies are less abundant in the study area and often occur as N-

S aligned features subparallel to the main direction of faulting. The carbonate build-ups 



are either located near faulted areas on the main structural highs or at local highs isolated 

by faulting within the deeper portions of the Barra Velha interval. These seismic facies 

display chaotic internal reflectors in original amplitude data and as such is associated with 

lower flatness (higher local flatness attribute values). Reflectors within these facies either 

display dips of greater than 80 ֯ or less than 45 ֯. The carbonate build-ups consistently 

display intermediate to high impedance values and no response for the rms amplitude 

signal; characteristics which were important for their discrimination. A predominance of 

shrubby and spherulitic carbonates can also be inferred for these seismic facies related to 

hydrothermal activity as suggested by Wright (2012), Wright and Barnett (2015) and 

Zalán et al. (2019). 

The debris seismic facies are generally laterally associated with carbonate build-

ups and as such they also occur as N-S aligned features but on the hanging wall side of 

normal faults. The use of the principal dip component seismic attribute as input for 

unsupervised classification was essential for the differentiation of this seismic facies from 

the carbonate build-ups. The debris seismic facies display consistently intermediate to 

high dip values even where they presented similar values to the carbonate build-ups for 

the other seismic attributes. We infer that the debris seismic facies consist of reworked 

sediments in the form of grainstones with clasts sourced from the insitu carbonates. It is 

important to mention that since both the build-ups and the debris seismic facies are 

associated with chaotic seismic signals, their unsupervised classification results are often 

intertwined in some places or can be mistaken with noise in poorly illuminated areas. As 

such their occurrence may have been overestimated in the seismic volume that covers 

part of the Buzios Field 

Figure 28 presents average proportion maps for each seismic facies as well as a 

zonation map of the study area that was created from these probability maps and which 

displays the most probable seismic facies within the Barra Velha Fm. interval. The 

zonation map (Figure 28d) indicates that the majority of the wells were drilled in places 

where either aggradational/progradational carbonate platforms or carbonate build-ups are 

the dominant seismic facies. There is a greater occurrence of the debris and carbonates 

build-ups seismic facies in the western portion of the study area.  



 

Figure 28: Seismic facies proportion maps within the Barra Velha Fm. interval for a) 

build-ups, b) aggradational/progradational carbonate platforms, c) debris seismic facies 

and d) a zonation map created from these proportion maps for the Buzios Field.  

An evaluation of the reservoir potential of each of the seismic facies was done, we 

performed it by comparing available porosity and permeability log data with the mapped 

seismic facies for each well locations. A log view for five wells is illustrated in Figure 29 

with an apparent trend of decreasing porosity and permeability towards the top of the 

Barra Velha Fm. However, due to the high heterogeneity of the formation it is difficult to 

observe any direct and marked correlation between the mapped seismic facies and 

petrophysical properties. Therefore, for a more statistical evaluation, porosity and 



permeability histograms were constructed for each seismic facies as well as cross-plots 

between those properties (Figure 30).  

Mean porosity is intermediate for all the seismic facies ranging from 0.10 to 0.12 

whilst mean permeability is considerably high ranging from 156 to 704 mD. The 

correlation between these two petrophysical properties varies from 0.83 to 0.866 for all 

the seismic facies and they can all be considered good reservoirs7. Permeability and 

porosity are higher for both the carbonate build-ups and the debris seismic facies thus we 

can infer that these seismic facies are the best reservoirs within the Buzios Field. 

However, it is important to note that the standard deviation in permeability is greater for 

these two seismic facies. Therefore, the carbonate build-ups and debris facies have greater 

heterogeneity leading to a possible reduction in reservoir quality in places. Finally, it is 

also important to highlight that these conclusions are based on information from wells 

drilled at structural highs, therefore caution should be used when using this well data to 

evaluate reservoir quality across the entire Buzios Field. 

 

 
6 It is important to note that both the porosity and permeability well logs were acquired using the same well 

logging tool (NMR), therefore it is expected that those two petrophysical responses will present a high 

linear correlation. However, it is fair to assume that there is some uncertainty related to this correlation due 

the acquisition tool. 
7 We highlight that all the classified seismic facies have high porosity and permeability. However, since 

the porosity and permeability well logs were acquired from wells drilled at the structural highs and at the 

best target locations for drilling, the assumption that all the Barra Velha Formation interval for the area is 

composed solely of good quality reservoirs cannot be made. 



 

Figure 29: Comparison between the results of seismic facies classification and the total 

porosity and permeability logs for five wells within the Barra Velha Formation interval. 

The high heterogeneity of the interval makes it difficult to establish a direct correlation 

between the petrophysical logs and seismic facies. Nonetheless a general decrease in 



porosity towards the top of the Barra Velha Formation was observed in the majority of 

the wells. 

 

Figure 30: Porosity and permeability distribution histograms and cross-plots between the 

two parameters for carbonate build-ups a.1), a.2) and a.3); aggradational/progradational 

carbonate platforms b.1), b.2) and b.3); and for the debris seismic facies c.1), c.2) and 

c.3). The debris and build-up seismic facies display better permeability and porosity. The 

correlation coefficients between permeability and porosity are high for all the seismic 

facies. 

3.4. Conclusions 

The proposed workflow for classifying and mapping seismic facies within the 

Barra Velha Formation across the Buzios Field, through the use of an unsupervised neural 

network and integration with statistical analysis of porosity and permeability as an 

advanced reservoir characterization proved to be effective. The preconditioning of 

seismic data for noise attenuation through filtering and the selection of stratigraphic and 

structural seismic attributes, produced good quality data and enough signal diversity to 

be effectively used as the input for the unsupervised classification. Three seismic patterns 

were identified in the amplitude seismic data and were classified as seismic facies by the 

neural network: carbonate build-ups, aggradational/progradational carbonate platforms 

and debris. Build-ups are located mainly only the footwalls of normal faults whilst the 

debris seismic facies occur laterally on the hanging wall side of faults. These two seismic 



facies are the most common in the western part of the study area. The principal dip 

component seismic attribute was fundamental for effectively differentiating between 

carbonate build-ups and the debris seismic facies during the unsupervised classification. 

The carbonate platforms are the dominant seismic facies across the Buzios Field and 

occur both on structural highs away from faulted areas and within the deeper portions of 

the studied interval. The carbonate build-ups and carbonate platforms are the most drilled 

seismic facies throughout the area but according to our statistical analysis the debris 

seismic facies and carbonate build-ups present the best porosity and permeability. The 

average porosity of these latter facies ranges from 0.11 to 0.12 and average permeability 

from 600 to 704 mD suggesting that carbonate build-ups and debris facies represent the 

best reservoirs within the Barra Velha Formation in the Buzios Field.  
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Abstract 

An embedded model estimator (EMBER) petrophysical modeling algorithm has been 

applied to obtain effective porosity and permeability within the presalt carbonate 

reservoirs of the Barra Velha Formation in the Buzios Field, Santos Basin. This advanced 

methodology was used due to the heterogeneity and complexity of these reservoirs, which 

make modeling by conventional geostatistical methodologies hard. Effective porosity was 

modeled using as secondary variables one facies model; one stratigraphic seismic 

attribute, acoustic impedance; and one structural seismic attribute, local flatness. 

Permeability was modeled using as a secondary variable the best effective porosity 

simulation result. Our results demonstrate that average effective porosity and 

permeability were 0.10 v/v and 440 md, respectively, indicating good reservoir quality 

throughout the studied area. A vertical trend of high effective porosities and 

permeabilities for the basal and uppermost reservoir sections was identified in our results 

as well as a trend with lower values for these reservoir properties for the intermediate 

reservoir section. The lower section of the formation presented more continuity, and we 

infer to be the best reservoir interval. Also, two horizontal trends for these reservoir 

properties were observed at the formation top: one of higher values aligned to the north-

south direction at the structural highs and another one of lower reservoir properties related 

to isolated structural lows within structural highs. Correlation between modeled results 

and the blind-test ANP-1 well upscaled properties was high, and upscaled well log 

property distributions were preserved in the EMBER simulations proving the predictive 

capacity of the used algorithm. Finally, conditional distributions analysis indicated that 



the basal section of the Barra Velha Formation presents higher uncertainty for the 

estimation of effective porosity. Therefore, even though this interval is considered to have 

the best reservoir characteristics, decision making should be done with caution for this 

reservoir section. 

4.1. Introduction 

Presalt carbonates from marginal Brazilian basins represent the main reservoirs of 

several important fields. As of May 2021, these reservoirs were producing 2.6 million 

barrels of oil per day, which represents 98% of the production from the Santos Basin, the 

most prolific Brazilian oil and gas basin (ANP, 2021). The Buzios Field is an important 

oil field operated by Petrobras and the second largest Brazilian oil field located within the 

Santos Basin limits (Figure 31). This field accounts for 27% of the total production from 

the Santos Basin, with total estimated oil reserves of approximately 30 billion barrels of 

oil (ANP, 2016, 2021). 

The presalt carbonate reservoirs in the Santos Basin are represented by the 

coquinas of the Itapema Formation at the base and by the Barra Velha Formation, at the 

top (Moreira et al., 2007). The Barra Velha was deposited within an alkaline-lacustrine 

paleoenvironment during the late rift and sag phases of the Aptian (Wright and Barnett, 

2015), and it has been suggested that precipitation occurred controlled by chemical 

processes (Wright, 2012; Wright and Barnett, 2015; Wright and Tosca, 2016; Wright and 

Barnett, 2017). Hydrothermal activity on rift faults and lixiviation of the surrounding 

terrains by meteoric water fed the lacustrine waters with alkalis and CO2 (Szatmari and 

Milani, 2016). Diagenetic processes also affected these carbonates and either improved 

or diminished their reservoir properties depending on location (Wright and Barnett, 

2020). 

Barra Velha Formation is composed of different kinds of grains such as shrubs, 

spherulites, carbonate muds, and Mg-rich clays, and lithological definition changes 

depending on the origin and abundance of these grains. However, the carbonate rock types 

of this formation can be represented by three main groups: mudstones or laminites, in-

situ carbonates, and reworked carbonates (Terra et al., 2010; Pereira et al., 2013; Rezende 

and Pope, 2015; Wright and Barnett, 2015; Farias et al., 2019; Gomes et al., 2020; Ferreira 

et al., 2021a). Proximal lacustrine facies are in-situ carbonates comprising lithologies 

such as shrubby carbonates and spherulitic carbonates. All these rocks could be reworked 



by erosion. Distal or local structural low facies of the Barra Velha Formation can be 

represented by mudstones or laminites. There is also evidence that in some locations 

volcanic rocks occur intercalated with these lacustrine lithologies, such as suggested in 

the works of Fornero et al. (2019) and Penna et al. (2019). 

Petrophysical reservoir characterization is usually hard for Barra Velha carbonates 

due to the formation’s complex depositional history and facies heterogeneity that requires 

advanced modeling techniques and deep understanding of conceptual depositional 

models (Johann et al., 2012; Johann, 2013; Bruhn et al., 2017; Ferreira et al., 2019a; 

Ferreira et al., 2019b Penna and Lupinacci, 2020; Ferreira et al., 2021a; Penna and 

Lupinacci, 2021).  

Castro and Lupinacci (2019) perform a petrophysical evaluation of the reservoirs 

within the Barra Velha Formation in the Buzios Field and propose a division for it at its 

top into upper and lower sags, with the lower sag being characterized by a greater 

stevensite clay content, which diminishes reservoir properties, and an upper rift phase at 

its base. They suggest that upper sag and upper rift sections are the best reservoirs and 

that the mean effective porosity for the entire formation is approximately 8% in the 

studied well.  

Dias et al. (2019) perfom an acoustic inversion in the Buzios Field to infer the 

relationship between acoustic impedance and porosity. There is a strong correlation 

between these two properties for the Barra Velha Formation, and two main trends are 

observed: one corroborated with the observations of Castro and Lupinacci (2019) where 

for the upper sag and upper rift sections, low acoustic impedance is associated with high 

porosity, and the second trend, for the lower sag section, associated low acoustic 

impedance values with low porosity, due to the presence of stevensite clays.  

Machine learning algorithms have also been applied for presalt reservoir 

characterization mostly for qualitative purposes related to seismic facies individualization 

such as in the works of   Ferreira et al. (2019a), Ferreira et al. (2019b), Jesus et al. (2019), 

Ferreira et al. (2021b). The methodologies applied use a series of seismic attributes in 

unsupervised learning for classification, and petrophysical signatures for each of the 

classified seismic facies, such as porosity and permeability, were only inferred by some 

of these authors.  



Ferreira et al. (2021b) performed an unsupervised seismic facies classification for 

the presalt carbonates from the Barra Velha Formation. in the Buzios Field. These authors 

discriminated three seismic classes: buildups, carbonate platforms, and debris, and further 

permeability and porosity distributions were inferred after basic statistical evaluation for 

each of these classes. The debris and carbonate buildup seismic classes were considered 

the best reservoirs with, respectively, average porosity from 0.11 to 0.12 v/v and average 

permeability from 600 to 704 md. 

Penna and Lupinacci (2021) performed a volumetric estimation of porosity and 

permeability for the Mero Field presalt reservoirs, located in the Santos Basin. They used 

flow units and lithologies as constraints for this modeling, with both generated by 

Bayesian inference having as inputs elastic attributes. Later, the porosity and permeability 

volumes were estimated for each of the discrete property models, flow units and 

lithological units, by using regressions between the discrete property versus porosity and 

porosity versus permeability. These authors concluded that the estimation of 

permeability-porosity characteristics of the reservoirs was better achieved using flow 

units as constraints and also that there was a strong impedance-porosity relationship for 

presalt reservoirs. Another conclusion was that for the Barra Velha Formation, in general, 

permeability-porosity characteristics were good, except for some continuous layers in the 

uppermost section. 

Classic geostatistical modeling for estimating petrophysical properties and 

reservoir characterization of facies are widely used with an extensive bibliography 

(Ziegel et al., 1998; Lantuéjoul, 2002; Caers, 2005; Pyrcz and Deutsch, 2014; Azevedo 

and Soares, 2017; Ferreira and Lupinacci, 2018). These methods have been successfully 

applied to the characterization of presalt Brazilian carbonate reservoirs (Peçanha et al., 

2019; Ferreira et al., 2021a). 

Ferreira et al. (2021a) used an integrated workflow for geostatistical facies 

reconstruction that included a truncated Gaussian simulation with the results of 4D 

sedimentary simulation as trends for the Barra Velha Formation in the Buzios Field. The 

lithotypes modeled were spherulitites and shrubby carbonate rocks, which dominated the 

structural highs; reworked facies, which were the byproduct of the erosion and transport 

of the previous lithologies and occurred in fault borders; and laminites, which occurred 

in both connected and isolated structural lows. Their model also suggested that the Barra 



Velha Formation is muddier at the base transitioning to in-situ carbonates in the middle 

section, before becoming muddier again at the top.  

It can be stated that even though geostatistical modeling is a powerful tool for the 

estimation of 3D reservoir properties and facies, it is based on a series of premises that if 

are not fulfilled prior to modeling, might cause a series of pitfalls (Caers, 2005; Sarma, 

2009; Azevedo and Soares, 2017). Hirsche et al. (1998) reviewed the premises and pitfalls 

in geostatistical methods and pointed out that one of the main premises is the stationarity 

of the modeled continuous variable, which assumes that its mean and variance are 

constants throughout the modeled area. In practice, this is a very hard premise to be 

achieved since, geologically, nonstationarity can be caused by changes in lithology, 

facies, or fluid saturation. These geological trends must be removed prior to modeling, 

and this process usually requires division of data into stationary groups such as a facies 

model built for the area. However, in complex geological settings, this division into 

stationary groups cannot be associated solely to different lithologies, for example, there 

are cases such as secondary porosity generation through diagenetic processes. 

Another important assumption is the linear correlation between the modeled 

property and the used secondary variable, usually a seismic attribute or a linear 

combination of those, when cokriging is applied. This correlation needs extensive data 

analysis to be proved, and different sampling rates between seismic and well data can 

diminish it. There are also limitations regarding the construction of the variograms, which 

represent the spatial correlation of the variable to be modeled when well data are sparse. 

For those cases, geological knowledge must be applied for a cohesive spatial correlation. 

Envisioning the creation of a modeling methodology that can overcome classical 

geostatistics limitations and the usual extensive work for its precise parameterization., 

Daly (2020a) developed an algorithm, called EMBER, for nonstationary spatial modeling 

using multiple secondary variables that combines geostatistics with quantile random 

forests. It provides estimation and stochastic simulation results, which are produced by 

the nonlinear combination of embedded geostatistical models. Those outputs represent 

the spatial continuity of the modeled variable with additional variables, such as spatial 

trends and seismic attributes. Examples of this methodology application are shown in the 

works of Daly (2020b), Daly et al. (2020), and Daly (2021). 



In this paper, we propose the use of the EMBER algorithm to perform effective 

porosity 3D modeling for the Barra Velha Formation in the Buzios Field, using well data 

information, a facies model and two seismic attributes as secondary variables, as well as 

permeability 3D modeling, using the resulting porosity model. By applying this 

methodology, we aim to improve the efficiency of the presalt reservoir characterization 

process within Buzios Field and address its potential by creating robust petrophysical 

property models without the extensive labor required by other advanced reservoir 

characterization techniques for complex sedimentary environments. 

 

Figure 31: Location of the Buzios Field within the Santos Basin. 

4.2. Method 

The dataset available consisted of 770 km2 of 3D poststack depth-migrated 

seismic (PSDM) data and effective porosity and permeability well logs from 13 wells 

within Buzios Field. We mapped the base of salt (of Upper Aptian age) and pre-Alagoas 

(of Lower Aptian age) unconformities which represent, respectively, the top and bottom 

limits of the Barra Velha Formation. Ages of the mapped unconformities were established 

by Moreira et al. (2007).  Figure 32 shows the data coverage across the study area 



including well location, depth contours of the base of salt unconformity, and the location 

of the seismic sections are presented in this study. 

 

Figure 32: Map view of the base of salt interpreted seismic horizon (depth contours) 

across Buzios Field (black polygon) with the coverage of the 3D seismic data shown by 

the dashed blue rectangle and well locations shown by black circles. The red lines show 

the location of the arbitrary seismic lines (AB1 and AB2) presented in this study. 

The workflow for property modeling is divided into two stages: (1) selection of 

secondary variables to be used as inputs for the (2) nonstationary spatial modeling of 

effective porosity and permeability using the EMBER algorithm. 



Selection of the secondary variables for EMBER modeling 

The selection of the secondary variables for modeling was done considering the 

evaluation of several seismic attributes based on amplitude, phase, and frequency or a 

combination of these components to identify stratigraphic and structural characteristics 

that could be conceptually correlated, linearly or nonlinearly, with the effective porosity 

and permeability distributions throughout the Barra Velha Formation within the area of 

Buzios Field. As discussed by Daly (2020a, 2021), EMBER algorithm rationale is based 

on the assumption that secondary variables, which might include seismic attributes and 

other types of data, might not explicitly contain information about the spatial correlation 

of the modeled property; therefore, linear correlation between secondary and primary 

variables is not required. 

We chose as secondary variables one facies model, one stratigraphic seismic 

attribute, and one structural seismic attribute as inputs for EMBER effective porosity 

modeling:  

• The geostatistical facies reconstruction property model was built via integration 

between geological process modeling and truncated Gaussian simulation by 

Ferreira et al. (2021a). We built this model considering the Barra Velha Formation 

conceptual geological information, such as inferred lacustrine base level curve, 

paleotopography, carbonate sedimentation, and erosion effects, with well log 

facies.  

• The absolute acoustic impedance stratigraphic attribute, which usually correlates 

well with lithological signatures, was obtained using the inversion algorithm 

proposed by Russell and Hampson (1991, 2006) and Barclay et al. (2008). The 

used acoustic inverted seismic attribute was the one created by Dias et al. (2019) 

in the Barra Velha Formation interval for the Buzios Field. 

• The local flatness structural attribute maps the flatness of reflectors, which are not 

necessarily horizontal, thus revealing vertical anomalies and faulted areas 

(Randen and Sønneland, 2005; Pereira, 2009). 

For the EMBER permeability modeling, we used as a secondary variable the best 

resulting effective porosity simulated model. Before the simulation for each of the desired 

properties, the upscaling of both effective porosity and permeability logs from the 

available wells and the seismic attributes used as secondary variables for the effective 



porosity modeling was performed. The grid in which the upscaling was done has a cell 

size of 100×100×10 m (x, y, z) and was constructed between the base of salt and pre-

Alagoas surfaces. Each of the secondary variables chosen for porosity modeling are 

shown in Figure 33 and Figure 34. The expression of these variables along an individual 

seismic trace extracted along the trajectory of the well ANP-1 is shown in Figure 35. As 

can be noted, there is no explicit linear correlation between any of the continuous 

secondary variables and either effective porosity or permeability upscaled well logs. 

 

Figure 33: Arbitrary section 1 (AB1) with a) original seismic volume with Barra Velha 

Formation top and bottom unconformities, base of salt and pre-Alagoas, respectively, and 

secondary variables chosen for EMBER porosity modeling: b) facies model from Ferreira 

et al. (2021a), c) local flatness attribute, and d) acoustic impedance attribute from Dias et 

al. (2019).  



 

Figure 34: Arbitrary section 2 (AB2) with a) original seismic volume with Barra Velha 

Formation top and bottom unconformities, base of salt and pre-Alagoas, respectively, and 

secondary variables chosen for EMBER porosity modeling: b) facies model from Ferreira 

et al. (2021a), c) local flatness attribute, and d) acoustic impedance attribute from Dias et 

al. (2019).  



 

Figure 35: Expression for each of the secondary variables used for effective porosity 

EMBER modeling and effective porosity and permeability upscaled logs along the ANP-

1 well trajectory within the Barra Velha Formation interval. From left to right, facies 

model, local flatness attribute, acoustic impedance attribute, and effective porosity and 

permeability well logs. 

Spatial modeling of effective porosity and permeability using EMBER algorithm 

EMBER property modeling algorithm developed by Daly (2020a) belongs to the 

class of conditional random fields (CRF) as defined by Lafferty et al. (2001). The CRF 

used by the methodology embeds prior spatial models using a Markovian hypothesis 

(Durrett, 2019). More specifically, as stated by Daly (2020b) and Daly et al. (2020) and 

further detailed by Daly (2020a) and Daly (2021), the CRF used in the EMBER algorithm 

works in the following manner for the estimation of the desired property:  



Let 𝑍(𝑥) be a target variable of interest at the location 𝑥 and 𝒀(𝑥) be a vector of 

secondary variables observed at 𝑥. Let {𝑍𝑖, 𝒀𝑖} be observations of the target and 

secondary variables observed in the field at the locations {𝑥𝑖}, and finally let 𝒁𝒆
∗(𝑥) =

𝒇({𝑍𝑖, 𝒀𝑖}) be a vector of pre-existing estimators of 𝑍(𝑥). Then the Markov hypothesis 

that is required is the conditional distribution of Z(x) given all available data 𝐹𝑍(𝑥)|𝐴𝑙𝑙(𝑧) 

satisfies as following: 

𝐹𝑍(𝑥)|𝐴𝑙𝑙(𝑧) =  𝐸[𝕀𝑍(𝑋)<𝑧|𝒀(𝑥), {𝑍𝑖, 𝒀𝑖}]  = 𝐸[𝕀𝑍(𝑋)<𝑧|𝒀(𝑥), 𝒁𝒆
∗(𝑥)]. 5.1 

This states that the conditional distribution of 𝑍(𝑥) given all the secondary values 

observed at 𝑥 and given all the remote observations of {𝑍𝑖, 𝒀𝑖} reduces to the far simpler 

conditional distribution of 𝑍(𝑥) given all the secondary values observed at 𝑥 and the 

vector of model predictions at x.  

In this study, the target variables, 𝑍(𝑥) are the effective porosity and permeability 

within Barra Velha Formation interval in the Buzios Field area. As previously mentioned, 

the seismic attributes acoustic impedance and local flatness as well as a facies model were 

used in the application for the effective porosity estimation, and the best resulting porosity 

model simulated was the only secondary variable used for the permeability estimation. In 

addition, two embedded simple kriging models are used as input variables, one with a 

long-range and one with a short-range, and the contribution of these models are 

determined together with that of the secondary variables during construction of 

𝐹𝑍(𝑥)|𝐴𝑙𝑙(𝑧). This is motivated by the empirical observation that the main contribution of 

embedded kriging in the algorithm is to provide information about lateral continuity of 

the target variable. This allows the EMBER process to be fully automated.  

Also, as described in Lafferty et al. (2001), the CRF does not require stringent 

hypotheses such as the stationarity of the property of interest and the stationarity of the 

relationship between the modeled variables and the secondary variables. The embedded 

models 𝒁𝒆
∗(𝑥) are constructed with these hypotheses; however, this influence is mitigated 

in two ways. First, the Markov hypothesis removes any direct influence of the 

construction of 𝒁𝒆
∗(𝑥), instead symmetrically weighing its influence on the final estimate 

on the ability of secondary variables to predict the target distribution. Second, the mean 

impact of stationarity in a classic model is seen in stochastic realizations, which must 

bring the full multivariate distribution and therefore lean heavily on the hypotheses. This 



can be avoided by the proposal made by Daly (2020a), in which a nonparametric 

paradigm is used for the estimation of 𝐹𝑍(𝑥)|𝐴𝑙𝑙(𝑧). The inference problem is complicated 

by the dependency on the embedded models 𝒁𝒆
∗(𝑥). If these estimators made use of 𝑍(𝑥) 

in the estimation of 𝑍(𝑥), a bias would have been introduced. This could be solved by the 

simple expediency of training the decision forest on cross-validated estimates. Thus, the 

training data set for each tree is {𝑍𝑖; 𝒀𝑖 , 𝒁𝑪𝑽𝒆
∗ (𝑥)}, where 𝒁𝑪𝑽𝒆

∗ (𝑥) are crossvalidated 

model estimates at x. With the estimates of 𝐹𝑍(𝑥)|𝐴𝑙𝑙(𝑧) at all target locations x, 

conditional realizations of the reservoir model are produced. A modified conditional P 

field simulation is used, which honors data at the well locations, and the simulation 

follows the local heteroscedasticity observed in the conditional distribution as well as the 

spatially varying relationship between secondary variables and modeled variable. 

In summary, some of the outputs of this methodology for both effective porosity 

and permeability modeled properties are the algorithm conditional distributions, such as 

P10 and P90, the uncertainty which is given by the subtraction of the P10 and P90 

distributions, and properties stochastic simulations. As an additional quality control for 

the results, we used the ANP-1 well as a blind test; therefore, it was not included in the 

EMBER algorithm. Also, it is important to note that 30 simulation results were generated 

for effective porosity and for permeability and the ones illustrated in this study were the 

ones that presented the best linear correlations with upscaled well logs from the blind test 

well. 

4.3. Results and Discussion 

The evaluation of the effective porosity and permeability EMBER simulations are 

presented as arbitrary sections in Figure 36 and in map view projected over the base of 

salt surface in Figure 37. As can be observed, the two modeled reservoir properties are 

quite similar in behavior, probably due to the linear correlation between the effective 

porosity and permeability upscaled well logs, around 82%, which clearly influenced 

EMBER algorithm for permeability modeling using the effective porosity modeling 

results as a secondary variable. Also, it is important to highlight that even though a facies 

model was used as an input for EMBER effective porosity modeling, there was little 

influence from it in the observed results, most probably related to the lack of predictability 

of the facies model with respect to the porosity well logs distribution. However, if the 



facies model had more influence on the results, they would be a scenario conditional to 

the facies model. 

The mean effective porosity and permeability values for the Barra Velha 

Formation within Buzios Field are 0.10 v/v and 440 md, respectively, and this fact 

indicates that those reservoirs present a good quality. Both reservoir property models also 

present a clear vertical trend of high values at base of the Barra Velha Formation that 

become lower in the intermediate section and then high again in the uppermost section. 

This fact corroborates with the conclusions presented by Castro and Lupinacci (2019), 

Dias et al. (2019), and Penna and Lupinacci (2021) in which the best reservoirs for the 

Barra Velha Formation both at the Buzios Field and in other Fields are usually at its basal 

section due to better reservoir characteristics and continuity.  



 

Figure 36: The resulting EMBER 3D property modeling volume along arbitrary line 1 

(AB1) for a) effective porosity and b) permeability and along the arbitrary line 2 (AB2) 

for c) effective porosity and d) permeability. Well paths are shown by the white lines, 

except for ANP-1 well used as a blind test, which is presented with a yellow line and with 

the associated upscaled property.  



 

Figure 37: The results EMBER 3D property modeling presented in map view for a) 

effective porosity and b) permeability over the base of salt surface (top of the Barra Velha 

Formation) and restricted to the main structural highs. Well locations are represented by 

the white circles, and the black polygon shows the limits of the Buzios Field. 

At the map view perspective, it is noticeable that at the structural highs, the highest 

effective porosities and permeability values occur, and those are aligned to a north-south 

trend. This is probably due to the presence of buildup-shaped seismic patterns formed at 



fault borders, which, as suggested by Ferreira et al. (2021b), represent some of the best 

reservoirs within Buzios Field. These features can also be observed in Figure 33a and 

Figure 34a. Another tendency that can be recognized in both section and map views is the 

low effective porosity and permeability values within isolated structural lows within 

structural highs. This is probably due to the higher content of finer carbonate deposits, in 

these areas as suggested by some authors such as Neves et al. (2019) and Ferreira et al. 

(2021a), which diminishes reservoir properties.  

An analysis of the effective porosity model with the secondary variables used in 

the EMBER algorithm for its simulation, shows that the model does not directly follow 

the behavior of any of the secondary variables across the modeled area. This is probably 

due to the nature of the methodology, which selects the weight of each of the secondary 

variables locally and based on their actual capacity to estimate the desired property. 

Nonetheless, some comparisons can be made, such as the tendency of the acoustic 

impedance volume, which presents lower values at the base of the Barra Velha Formation 

and that becomes higher in the intermediate section and then lower again at the top (Figure 

33d and Figure 34d). This negatively correlates with the effective porosity modeling 

results and, consequently, the permeability results. However, the property modeling 

results present a much higher frequency than the acoustic impedance attribute. This is 

probably due to the consideration of other secondary variables and the embedded kriging 

models created by the algorithm to describe the spatial correlation of the modeled variable 

in the modeling process.  

Also, there are several areas where acoustic impedance values are lower and 

should be correlated with high effective porosities and permeabilities or vice-versa; 

however, this is not the case in this study. This could be related to the occurrence of 

laminites in the facies model, which usually present lower acoustic impedance values; 

however, since they are composed of finer deposits, they are expected to have lower 

effective porosity and permeability values. Another inferred cause for this to happen 

could be diagenetic processes that could have increased or diminished those reservoir 

properties at different places. Correlation of the property modeling results with the local 

flatness attribute is trickier (Figure 33c and Figure 34c). It seems that the places that have 

higher local flatness attribute values, which indicates lower reflector flatness, usually 

present medium to high effective porosity and permeability values. This could be 



indicative of good reservoir characteristics at faulted areas or areas where chaotic 

reflectors occur. 

As discussed, the facies model (Figure 33b and Figure 34b) seems to have little 

influence on the effective porosity results. However some observations can be made such 

as that at the upper section of the Barra Velha Formation, the shrubby carbonates and 

spherulitites located at structural highs present medium to high effective porosity and 

permeability values. The same behavior can be noted for the reworked facies near fault 

borders. This fact confirms the suggestion made by Ferreira et al. (2021a) that these could 

be the best reservoirs within the Barra Velha Formation for the Buzios Field. For the 

lower section of this formation, the facies model presents mainly laminites which are 

composed of finer carbonate grains and classified as nonreservoir by these authors. 

However, both effective porosity and permeability simulation results showed medium to 

high values, which indicates good reservoir quality for the lower section of the Barra 

Velha Formation. This fact was also noted in other works such as Dias et al. (2019) and 

Penna and Lupinacci (2021). Therefore, this leads to the suggestion that probably the 

occurrence of laminites in the lower section of the Barra Velha Formation at structural 

highs was overestimated by Ferreira et al. (2021a). It is also important to highlight that 

the effective porosity and permeability models were built based on information from 

wells drilled at structural highs; therefore, caution should be used when using those 

models to evaluate reservoir quality at the structural lows within Buzios Field, due to any 

bias effect not evaluated. 

For quality control purposes, the well ANP-1 was excluded from the EMBER 

simulations and, therefore, used as a blind test for both effective porosity and permeability 

models. Figure 36 and Figure 38a illustrate the comparison between the upscaled effective 

porosity and permeability logs for this well and the results of the simulations for each of 

these properties at section and well views, respectively. For both effective porosity and 

permeability, linear correlation between original and simulated data is high, 73% and 78% 

respectively, thus confirming the predictive capacity of the used methodology. Figure 38b 

and Figure 38c illustrate the histograms for both the well upscaled cells and the EMBER 

simulation results for both effective porosity and permeability, respectively. As can be 

noted, the modeled results also match quite well the initial properties distribution. 



 

Figure 38: Comparison between the effective porosity and permeability upscaled well 

logs (black lines) and EMBER simulation results (red lines) for those properties are 

presented in a). In b) and c), effective porosity and permeability upscaled well log 

distributions (green histograms) and results distributions (blue histograms) are shown, 

respectively.   



Finally, to address the simulation result uncertainties, the conditional EMBER 

distributions, P10 and P90, and the uncertainty volumes were evaluated for effective 

porosity (Figure 39) predictions. We highlight that higher uncertainties are concentrated 

in the lower section of the Barra Velha Formation. This fact indicates that even though 

the lower section of the Barra Velha Formation is considered to have the best reservoirs, 

it also presents higher level of uncertainty; therefore, conclusions and decisions should 

be made with caution for that section. Also, we highlight that uncertainty was not 

evaluated for permeability results since the effective porosity simulation was used as its 

input and, therefore, the uncertainty for permeability simulation would be biased by 

effective porosity uncertainty. 

 

Figure 39: Illustrations at the arbitrary section 2 (AB2) for effective porosity P10 (a) and 

P90 (b) conditional distributions and uncertainty (c).  Blind test ANP-1 well is represented 

by the yellow line, and its associated upscaled effective porosity well log is illustrated on 

the right side of the well trajectory. 

4.4. Conclusions 

We proposed a methodology using an EMBER algorithm for modeling of 

effective porosity and permeability using secondary variables within the Barra Velha 

Formation across Buzios Field. Effective porosity modeling results could only be 

associated at some locations with secondary variables used for the effective porosity 

simulation. However, a linear correlation between primary and secondary variables is not 

a requirement for the adopted methodology. Since the permeability simulation result was 



generated using the effective porosity result as a secondary variable in the EMBER 

algorithm, they consequently have a high linear correlation and behave with the same 

patterns throughout Buzios Field. 

Average effective porosity and permeability were 0.10 v/v and 440 md, 

respectively, indicating good reservoir quality within Barra Velha Formation. Also, they 

presented a vertical and general trend of a basal section with high effective porosities and 

permeabilities, an intermediate section with lower reservoir properties, and again an 

upper section of higher reservoir properties. The lower section of the formation presented 

more continuity and could be inferred as its best reservoir interval.  

Two horizontal trends for effective porosity and permeability were observed at 

the base of salt surface, which represents the Barra Velha Formation top. One trend of 

higher values was aligned to the north-south direction and correlated to buildup seismic 

patterns at fault borders associated with spherulitites and shrubby carbonates from the 

facies model. And another trend of lower reservoir properties related to isolated structural 

lows within structural highs possibly associated to the occurrence of finer deposits, as 

suggested by the facies model.  

High linear correlation between the simulation results for effective porosity and 

permeability and the upscaled well logs for the blind test well ANP-1 proved the 

predictive capacity of the used algorithm. Also, the upscaled well log distributions were 

generally preserved for both properties modeling results. Finally, conditional 

distributions analysis indicated that the basal section of the Barra Velha Formation 

presents higher uncertainty for the estimation of effective porosity; therefore, even though 

this interval is considered to have the best reservoir characteristics, decision making 

should be done with caution for this section. 

  



6. Final Consideration 

The proposed and applied advanced 3D reservoir characterization workflows and 

innovative algorithms in this thesis were able to provide important discussions regarding 

the geology of the Barra Velha Formation within the area of the Buzios Field. Those 

insights provided a better understanding regarding the origin and possible controls for the 

deposition of the Aptian presalt reservoirs for the Santos Basin and its impacts on their 

petrophysical characteristics and, consequently, reservoir quality. 

Our results showed that the Barra Velha Formation throughout Buzios Field area 

presents mostly carbonate build-ups, aggradational/progradational carbonate platforms, 

and debris seismic facies. Those facies can be associated with a range of lithological 

facies and their respective sediments such as shrubby carbonates, spherulites, laminites, 

and reworked facies. The in-situ carbonate facies are located mostly at the structural highs 

and can be linked in occurrence usually with the carbonate platforms and build-up seismic 

facies. These can be considered the best quality reservoirs in the field for the studied 

interval and have effective porosities that range from 0.2 to 0.20 v/v and permeabilities 

that range from 0.01 to 10000 mD with average effective porosity of 0.10 v/v and average 

permeability of 440 mD. Such good reservoir characteristics can clearly explain why this 

field is so important in the Brazilian oil and gas scenario and, consequently corroborate 

to the relevance of the presalt reservoirs. 

3D reservoirs characterization approaches were used for the papers published in 

journals and presented in this thesis. The first technique was based on the integrated 

application of 4D sedimentary modeling with geostatistical modeling methodology for 

facies reconstruction. One of the advantages of this integrated workflow is the capacity 

to create an individual conceptual geological model for each desired modeled area 

considering that the algorithm works as a digital sedimentary laboratory. It also allows 

the conceptualization of several different probable scenarios for the sedimentation 

processes and, consequently, expected lithological distributions considering 

paleotopography, base-level variations, tectonic activity, and, for carbonate rocks, even 

the carbonate factory production independently of biological, chemical, or mixed origin. 

The main disadvantage of this method is in the high quantity of parameters to be 

adjusted for 4D sedimentary modeling which can allow the imagination of the 

geomodeler to go further than viable geological values for these parameters. Besides that, 



the high quantity of parameters also makes it difficult to properly match the conceptual 

sedimentological results with facies data from wells, since the algorithm still cannot 

parametrize, itself considering real data from wells. 

The second applied methodology was based on unsupervised seismic facies 

classification using neural networks algorithm and further qualitative inference of 

porosity and permeability associating seismic classification facies results with well data. 

One of the biggest advantages of this methodology is the quickness of its application and 

parametrization considering that it is only necessary to define the number of clusters to 

be classified from input data. This fact allows the interpreter to have a robust yet fast 

perspective of existing seismic facies in the study area and make a quick qualitative 

analysis regarding reservoir geology and properties. 

The advantages of this machine learning methodology can also be considered its 

disadvantages by the detailed 3D reservoir characterization perspective, since the 

technique has its vertical resolution limited by seismic attribute resolution and, 

consequently, due to the known incompatibility between seismic data and well data its 

results can only provide means to infer about the petrophysical characteristics of the 

reservoir. 

The methodology applied in the third paper presented in this thesis uses a machine 

learning algorithm that was built using geostatistical concepts to address the reservoir 

properties. From a practical perspective, the advantage of this methodology is 

undoubtedly its parametrization simplicity, accuracy, and quickness for the generation of 

multiple equiprobable stochastic results when compared to conventional geostatistical 

methodologies. Besides that, the possibility to use limitless secondary variables as inputs 

without the need of a previous combination amongst them, a known limitation from 

classical geostatistical algorithms, is very satisfactory.  

The parametrization simplicity can be insufficient in some aspects since it does 

not allow the geomodeler to establish clearly and objectively the spatial correlation 

between the primary variable with each of the secondary variables, for example, by 

determination of weights per secondary variables. 

In other words, all the technologies in this thesis can be applied to successfully 

characterize complex reservoirs such as the Brazilian presalt Aptian carbonates. 

However, the geomodeler and interpreter using them should consider their respective 



advantages and limitations depending on the level of detail desired for the 3D reservoir 

model. This fact is intrinsically related to the time available for its construction and 

pertinent accuracy. 

For the future of those 3D reservoir characterization methodologies in complex 

reservoirs, it would be interesting to develop a simpler parameterization approach for the 

geological process modeling. Possibly, machine learning algorithms could be a way to 

derive directly from well data the sedimentation rates and base level curves. This could 

dramatically decrease the level of uncertainty of the results which are based mostly on 

conceptual paleoenvironmental parametrization and increase the possibility of results 

matching well data better. 

Regarding machine learning techniques, it is difficult to infer future developments 

considering the potential of the algorithms for automatizing processes and operations and 

its vast range of applicability in the oil and gas industry. However, recommendations for 

short-term developments in the unsupervised classification machine learning 

technologies could aim to diminish the limitations regarding vertical resolution, usually 

correlated to the input data of seismic origin. The automatized incorporation of filters that 

can help increase seismic data resolution can be a possible solution. Also, it can be 

expected the development of robust algorithms that can not only classify seismic facies 

but be used for automatized seismic horizon or fault interpretation which would help 

make the 3D reservoir characterization process a lot easier. 

As for the algorithms using supervised machine learning for estimation of 

reservoir properties, much can be improved to incorporate more geomodeler oversight on 

the geological controls over the properties to be modeled. Also, it would be interesting to 

see those methods being available not only for the modeling of continuous reservoir 

properties, such as porosity and permeability, but also for discrete reservoir properties 

such as lithological facies.  

Indeed, there is a whole world that can be expected in the next few years regarding 

the improvement of existing advanced 3D reservoir characterization techniques and the 

conceptualization and creation of new ones. The scenario for the future of this study area 

is expected to change rapidly and especially pushed by machine learning. This is the 

beauty of working with 3D geological modeling since all modeling processes are attempts 

to reproduce the factual geology and as such, they are always uncertain to some extent. 



Uncertainty represents a range of possibilities and possibility is what drives constant 

evolution. 
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