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Abstract 

Rock typing into flow units (FU) is a well-known technique for characterizing flow 

heterogeneities in reservoirs and producing reliable estimations of petrophysical properties, as 

porosity and permeability. This thesis aims to discretize flow units in a Brazilian pre-salt 

reservoir through conventional core laboratory measurements and transpose this classification 

to the well log domain and 3D model of the reservoir, considering elastic and acoustic inverted 

seismic data as constraints. First, I performed core and well log data feasibility study of FU 

discretization, considering three different FU methods and the seismic vertical scale and 

resolution characteristics. This first study results provided means and grounds for the FU 

classification that I later chose to consider and the implications of the seismic limited vertical 

resolution in the classification. I noticed that porosity and permeability cumulative curves were 

a powerful tool for visualizing and analyzing the scale of the classification in a decametric 

sense, suitable for the seismic classification that the aim to achieve. The second study is a 3D 

FU Bayesian facies classification and petrophysical modeling considering the discretization 

made in the 1D domain. This is the first Brazilian pre-salt porosity and permeability 3D models 

constrained by both flow unit classification and elastic and acoustic inverted seismic data. The 

results from the second study showed that, using the FU as constraints, decametric porosity and 

permeability volumes are more robust in 3D approaches than considering the usual seismic 

lithologic classification. In the third study, I pushed the petrophysical modelling below the 

seismic vertical resolution, discretizing and calculating metric FU through geostatistical seismic 

inversion. Using the cumulative curve concept, I generated metric flow units within each 

decametric flow units and constrained the geostatistical inversion in this manner to generate 

several high-resolution porosity and permeability volumes with respect to the seismic data in 

the decametric scale. The results from the third generate high quality decametric and metric 

porosity and permeability volumes, respecting the available seismic data even below the 

resolution limit. Finally, I hope that the produced 3D volumes of flow units facies, permeability 

and porosity in decametric or metric scales can be incorporated as variables for the lateral 

interpolation of petrophysical reservoir parameters during the static and dynamic modelling, as 

well as support seismic 4D interpretations and seismic-assisted history matching. 

Keywords: Flow units; seismic quantitative interpretation; presalt reservoir; 3D reservoir 

modelling; petrophysical modelling. 
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Resumo 

A discretização de rochas em unidades de fluxo (FU) é uma técnica bem conhecida para 

caracterizar a heterogeneidade de fluxo em reservatórios e produzir estimativas confiáveis de 

propriedades petrofísicas, tais como porosidade e permeabilidade. Essa tese visa estabelecer 

uma metodologia de cálculo de unidades de fluxo em reservatórios do pré-sal da bacia de Santos 

por meio de medições convencionais de laboratório em testemunhos e, em seguida, transpor 

essa classificação para os perfis de poço e, depois, para os modelos tridimensionais do 

reservatório, considerando dados sísmicos elásticos e acústicos invertidos como variáveis de 

controle. Em um primeiro momento, realizei o estudo de viabilidade dos dados de testemunho 

e dos perfis de poços, considerando três métodos diferentes de discretização e as características 

de escala e resolução vertical da sísmica. Este primeiro estudo forneceu meios e fundamentos 

para a minha classificação de FU, bem como estabelecer as características e implicações da 

limitação da resolução vertical da sísmica na classificação. Eu notei que as curvas acumuladas 

de porosidade e permeabilidade são ferramentas poderosas de visualização do efeito da escala 

de observação na classificação, efeito este bastante adequado para uma classificação através de 

dados sísmicos. O segundo estudo consiste em uma classificação de fácies de fluxo Bayesiana 

tridimensional com modelagem petrofísica de porosidade e permeabilidade, considerando a 

discretização 1D feita no estudo anterior. Este é o primeiro modelo tridimensional de 

porosidade e permeabilidade feito no pré-sal da bacia de Santos controlado tanto pelas fácies 

de fluxo quanto pelos atributos elásticos e acústicos oriundos da sísmica via inversão. Os 

resultados do segundo estudo mostraram que, ao utilizarmos as fácies de fluxo como controle, 

podemos calcular porosidades e permeabilidades derivadas da sísmica com muito mais acurácia 

na escala decamétrica, em comparação à utilização usual de fácies litológicas. No terceiro 

estudo, eu promovi a classificação para além das limitações de resolução vertical da sísmica, 

discretizando e calculando FU na escala métrica através do uso de inversão e modelagem 

geoestatística. Com o conceito de curvas acumuladas da petrofísica, foram geradas fácies de 

fluxo métricas dentro das fácies de fluxo decamétricas, e, parametrizando a inversão 

geoestatística com essa hierarquia, calculei diversos modelos métricos de porosidade e 

permeabilidade que respeitam o dado sísmico na escala decamétrica. Os resultados do terceiro 

estudo mostraram que é possível gerar volumes de porosidade e permeabilidade de alta 

qualidade, tanto na escala métrica quanto na escala decamétrica, respeitando o dado sísmico 

disponível mesmo abaixo do seu limite de resolução vertical. Por fim, eu espero que os volumes 
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de fácies de fluxo, porosidade e permeabilidade produzidos por essa metodologia possam ser 

incorporados como variáveis diretas na modelagem estática e dinâmica dos reservatórios, bem 

como auxiliar interpretações de sísmica 4D e estudos de ajuste de histórico assistido por sísmica 

utilizando técnicas de filtro Kalman, por exemplo. 

 

Palavras-chave: Unidades de fluxo; interpretação sísmica quantitativa; reservatório do présal; 

modelagem tridimensional de reservatório; modelagem petrofísica. 
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Preface 

In my Petrobras career, mainly as quantitative interpretation reservoir geophysicist, it 

always bothered me how poor was the quality of calculated porosity and permeability models 

through seismic data and lithologic facies as constraints. It all worked fine in the well log 

domain, but not so much when translating the equations and relationships for the 3D world 

using acoustic and elastic impedance volumes. In some cases, we had a state-of-the-art seismic, 

a good understanding of the local geology, a complete suite of well logs, several laboratory 

measurements, expensive software and algorithms, integrated workflows and, even so, the 

obtained results were just unsatisfactory. 

The first concept of flow units I had was working together with reservoir and exploration 

petrophysicists along with other scientists, mainly to obtain more realistic porosities and 

permeabilities from magnetic resonance well logs. At the time, I tried to constrain some of the 

facies calculations using impedance and sonic logs, but it did not occur to me that we could 

later integrate the seismic data in the process and generate, maybe, some 3D flow units volumes 

and better petrophysical properties using these as constraints. At the time, flow units were just 

a 1D well log calculation translated to the 3D reservoir model using geostatistical tools in order 

to populate the grid. 

In 2019, I joined the Universidade Federal Fluminense (UFF) as a Master’s degree 

candidate in the stricto sensu post-graduation program Dinâmica dos Oceanos e da Terra, 

having PhD. Wagner Moreira Lupinacci as advisor. The idea, at the time, was to perform a 1D 

flow units feasibility study using acoustic and elastic impedance as main properties, providing 

means and grounds for a later study of 3D calculation. This first work (Penna and Lupinacci, 

2020) was published in the SPE Reservoir and Engineering Journal. 

As the Master’s project continues, we realized that there was a huge potential for 3D 

calculation of porosity and permeability using flow units as constraints, if we could handle the 

vertical resolution difference of well and seismic data. We decided, then, to “upgrade” the 

Master’s degree to a PhD. degree, extending the scope of the project to a 3D flow units 

calculation and petrophysical modelling in the seismic resolution (decametric) and, also, below 

the seismic resolution (metric). This work progression, in both decametric and metric scales, 

led other two publications: Penna and Lupinacci (2021) published in the Marine and Petroleum 

Geology Journal and Penna and Lupinacci (2022), published in XXXX. 
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1. Introduction 

In geology and reservoir characterization, the subject “reservoir modelling” is often 

refereed as the practice of representing the subsurface complexity through porosity and 

permeability parameters, aiming to produce realistic dynamic and static models for oil 

production (Doyen, 2007). This process become especially harder when the reservoir being 

modelled comprises a series of heterogeneous rocks with several diagenetic phases, complex 

structural framework and, for the most cases, hard-to-acquire data for uncertainties 

minimization, such as the Brazilian pre-salt carbonate. 

In a 1976 publication the statistician George Box said the well-known phrase “all 

models are wrong”, that later he corrected for “all models are wrong, but some are useful” (Box, 

1976). This sentence is more and more the reality for any geoscientist working with limited 

resources and high uncertainties in complex environments. We are all aware of our models 

limitations, but we try the best to represent the local geology heterogeneity with just a few 

useful parameters. Surprisingly, at the end, models sometimes can indeed represent, with a 

satisfactory level of accuracy, the subsurface geology and fluid flow, supporting the decision-

making process of the reservoir characterization process. 

In that sense, pursuing methods and workflows that can calculate better inputs and 

parameters for the model building workflow is the daily goal for any geoscientists working 

inside a reservoir asset team. Several publications show that, in the presence of complex 

geological settings with differential diagenesis, the estimation of porosity (ɸ) and permeability 

(𝑘) performed on a flow unit (FU) basis should be more accurate than the estimation made on 

lithological or sedimentary facies, as discussed by Aggoun et al. (2006), Daraei et al. (2017), 

Hatampour et al. (2018) and Ghanbarian et al. (2019). 

Flow units classification is a well-known technique for petrophysicists since the 1980 

decade, but the available bibliography is very limited to core and well-log data, like Amaefule 

and Altunbay (1993); Altunbay et al. (1994); Abbaszadeh et al., (1996); Chen et al., (2017); 

Gunter et al. (1997); Kolodzie (1980) and Oliveira et al. (2016). It is very uncommon to see 

publications that effectively extrapolate flow units and its porosity and permeability estimations 

away from the well location, generating tridimensional models for reservoir classification. Even 

latest methods, like the mercury injection based Winland R35 (Pittman, 1992), FZI-star 
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(Mirzaei-Paiaman et al., 2018) and electrical formation factor (Ghanbarian et al., 2019) are very 

restrict to well core data and control (Rebelo et al., 2022). 

There are, in fact, a few available publications who aims toward a tridimensional flow 

units modelling, producing discrete FU facies volumes and petrophysical parameters derived 

from them (Martin et al., 1997; Udegbunam and Amaefule, 1998; Porras and Campos, 2001; 

Svrsky et al., 2004; Aggoun et al., 2006; Li et al., 2018 and Zhang et al., 2018). However, most 

of these works consider the lateral extrapolation of flow units, porosity and permeability away 

from the well domain merely a geostatistical matter, there is, a kriging extrapolation (or any 

other extrapolation technique) without the constraint from a spatially acquired data, which, in 

our case, is seismic data. Although this is a rather commonly used technique in the industry, it 

can result unrealistic static and dynamic models, especially in complex geological settings 

where porosity and permeability can change rapidly due to diagenetic and sedimentary factors. 

For quantitative interpretation geophysics working with flow units to generate porosity 

and permeability estimations there is a limited number of publications available in the literature 

addressing this matter. Reference books like Avseth et al. (2005), Simm and Bacon (2014), 

Dvorkin et al. (2016) and Vernik (2016) do not comment about this method or mention any 

procedures or technique to incorporate flow units into the usual quantitative interpretation 

workflow through acoustic and elastic parameters. In fact, in literature, flow units methods are 

restricted to classical petrophysics works, especially core-related data and analysis in a variety 

of geological settings and samples. 

One of the first publications correlating flow units and geophysics (more specifically P-

wave velocity) is, perhaps, Prasad (2003). Although in this work the author’s objective was not 

to obtain better reservoir properties but to study P-wave attenuation through Biot theory using 

flow units as a template; the study shown that a positive correlation between velocity and 

permeability can be established using grouped flow units as constraints. Using FZI values for 

pore space properties the modeled data agrees well with measure data, there is, flow properties 

can be predicted. This intrinsic FZI characteristic representing pore space properties (more 

specifically pore throat space) is also mentioned by Hasan and Hossain (2011).  

Recently, a limited number of works aiming to characterize better reservoir properties 

through flow units were published, such as Rastergania and Kadkhodaie (2013), Emami-Niri 

and Lumley (2014), Rastergania et al. (2016), Iravani et al. (2018) and Xin et al. (2022). 

However, most of these publications consider a small amount of flow units (two, for most cases) 
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in a rather simple geological setting, like sand and shale horizontal layering. Concerns like the 

total number and the upscaling of FU, seismic vertical resolution limitation, uncertainties in 

seismic facies classification and other intrinsic quantitative seismic interpretation problems are 

not needed in these cases. For our purpose, in a more complex geological environment, we must 

take all these details under account to estimate adequate porosity and permeability according to 

seismic characteristics. 

It is important to mention that Santos Basin pre-salt carbonates are, to date, the most 

prolific hydrocarbon producer in Brazil, with great sediment column thickness and wide lateral 

extension. Specifically, Mero reservoir, the studied area in this thesis, accounts for more than 

10,000 million of bbl. in place, the third largest reservoir in Petrobras (ANP, 2021). Its 

complexity in term of sedimentation process, igneous rock presence, structural framework, 

diagenesis, operational challenges and production costs, however, implies the need of a risk 

mitigation from geologists, engineers and geophysics working in the project. Due to the 

reservoir scale, a small error in the porosity or permeability estimation can lead to large 

miscalculations in the end of the process, there is, production and injection frameworks, 

production platform scaling, well drilling estimation costs and reservoir management. Given 

that, the motivation of this thesis is to provide means and workflows to produce better 

petrophysical properties of the reservoir according to the local geology characteristics and the 

available seismic data. First, using core data, I performed a flow unit classification that later 

was translated to the well log and later to the 3D seismic using a sequence stratigraphy 

reasoning for upscaling. I classified decametric flow units facies using the p-impedance and s-

impedance attributes through a Bayesian inference, calculating porosity and permeability 

volumes. Then, I pushed the classification below the seismic resolution limit, using a Bayesian 

geostatistical seismic inversion producing a larger number of metric FU. 

To achieve these objectives, I subdivided the thesis into three main steps: (1) a core data 

feasibility study; (2) 3D classification of four decametric flow units facies through Bayesian 

inference and (3) 3D classification of eight metric flow units through geostatistic inversion. All 

of these steps correspond to specific publications in scientific journals. 

The first stage, a feasibility study of several flow units classification methods adequate 

to the data available, was published in SPE Reservoir Evaluation and Engineering journal 

(Penna and Lupinacci, 2020). Using core data from both Barra Velha and Itapema formations, 

we considered Lorenz plots (Gunter et al., 1997); FZI classification (Amaefule and Altunbay, 
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1993), which we decided to use further, and electrical quality index method (Soleymanzadeh et 

al., 2018). In this publication, we noticed how cumulative porosity and permeability curves can 

be a powerful graphical tool for upscaling flow units into the seismic vertical resolution 

(decametric). Then, we defined the FZI classification template and studied the discretization of 

FU using filtered well log data, simulating how accurate was the estimated porosity and 

permeability and how them would behave when applied to real seismic data. 

The outputs from this work were the FZI template chosen for decametric flow units 

discretization and the upscaling method using a sequence stratigraphy reasoning through 

cumulative porosity and permeability curves. We later used all the classification stablished in 

this 1D study for the Bayesian 3D facies classification and geostatistical inversion. 

The second study and article from this thesis was published at the Marine and Petroleum 

Geology journal and comprises the application of the FZI template stablished in the 1D 

feasibility study through a FU facies Bayesian 3D volumetric classification (Penna and 

Lupinacci, 2021). Using p- and s-impedance volumes, as well as k-ø relationship per FU facies, 

we calculated posterior occurrence probability volumes that we later used as constraints for the 

estimated porosity and permeability. We compared the FU petrophysical attributes with 

lithologic facies petrophysical attributes and noticed that we had much better accuracy when 

we considered flow units as template for the calculation. 

From this work, we proved that, with an adequate upscaling of FU according to the 

seismic vertical resolution characteristics, we can calculate facies, porosity and permeability 

volumes from p- and s-impedance data that are much more accurate than using conventional 

lithologic facies. We expect that these output volumes can be instantaneously incorporated into 

4D seismic interpretation studies workflows, as well as seismic assisted history matching and 

production/injection framework optimization. 

In the third study, we pushed the classification below the seismic resolution limits, 

calculating eight metric flow units (MFU) within each of the four decametric flow units (DFU) 

used in the second study. First, we stablished the relationship in core data, and later in well log 

data. Then, using geostatistical inversion for p- and s-impedance attributes, we simulated metric 

flow units constrained by the seismic data in the decametric scale. Given each of the eight 

metric flow units and its petrophysical distribution as pdfs (probability density functions), we 

co-simulated porosity and permeability generating a significant number of feasible models for 

Mero reservoir (Penna and Lupinacci, in preparation).  
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The last study results showed that it is possible to simulate flow units below the seismic 

resolution limit, but also respecting the seismic data in the decametric scale. This is equivalent 

to say that if we convolve a specific wavelet with any of the simulated impedance or porosity 

models (given a rock physics model) in the metric scale, the resultant synthetical seismic would 

be almost identical to the real seismic in the decametric scale. From these results we can 

estimate pessimistic, optimistic or base case scenario for the porosity in the reservoir, as well 

as any other probabilistic analysis in the results. 

It is important to mention that this is the first attempt to incorporate pre salt flow units 

into the seismic quantitative interpretation workflow, producing more accurate porosity and 

permeability volumes constrained by this FU classification. In this subject, we consider the 

scale recognition of the FU characteristics an important matter, and we acknowledge the 

upscaling based on a sequence stratigraphy reasoning as a crucial step. Finally, this thesis is 

structured in the presentation of each of the published papers previously mentioned. At the end 

I wrote final considerations for all the studies and future expectations in flow units topic. 
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2. Decameter-Scale Flow-Unit Classification in Brazilian Presalt 

Carbonates 

Article published in 

SPE Reservoir Evaluation & Engineering, Vol. 23, 2020. 

Impact Factor: 2.67 

Authors: Rodrigo Penna and Wagner Moreira Lupinacci 

2.1 Abstract 

Rock typing into flow units (FUs) plays a pivotal role in constructing static and dynamic 

models of petroleum reservoirs. Decisions made by asset teams mostly depend on predictions 

of how fluids will percolate through the subsurface during the reservoir life cycle. In carbonate 

settings, dealing with rock typing is complex and can generates a large quantity of units, due to 

diagenetic processes like dissolution, cementation and silicification. Most rock typing methods 

in carbonates successfully classify small-scale flow heterogeneity in well resolution but fails 

when interpolating those facies further away from the 1D domain, because of the lack of 

correlation between flow units and spatial data. Seismic data can be used to detect large-scale 

FUs and assist the interpolation of small-scale FUs in 3D reservoir volume, thus producing 

more realistic static and dynamic models. 

We propose a modification of the classical rock typing methods based upon 

permeability (𝑘) versus porosity (∅) plots and electrical properties, using a dataset from the 

Mero Field, part of the Libra giant field of pre-salt carbonate reservoirs in offshore Brazil. From 

the permeability cumulative S-curve analysis, we established major large-scale flow units that 

maintain part of the carbonate flow heterogeneity and correlate them with the elastic attributes:  

p-impedance (PI) and s-impedance (SI). In addition, we established a priori PI and SI 

correlations with the formation factor (𝐹) parameter to categorize large-scale flow units using 

the 𝐹 versus 𝑘 methodology. 

With the large-scale FUs mapped in seismic datasets, core plug-scale FUs can be 

populated into the 3D static and dynamic models using geostatistics tools, thus creating more 

realistic reservoir models and assisting asset teams in the decision-making process. 
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2.2 Introduction 

Hydrocarbon reservoirs are heterogeneous and not uniform, which can be divided into 

multiple homogeneous groups, called Flow Units (FUs). Each unit presents similarities in terms 

of grain size, texture, cementation, pore distribution, porosity and other physical characteristics 

controlled by the sediment depositional environment and diagenesis (Altunbay et al., 1994). 

FUs for reservoir characterization are an effective way to simulate fluid movement and oil 

production behavior. According to Ebanks (1987), “a flow unit (FU) is a representative 

elementary volume of the total reservoir rock, within which geological and petrophysical 

properties that affect fluid flow rate are internally consistent and predictably different from 

properties of other rock volumes.” 

Rock typing for FU in reservoirs has been a source of debate for geoscientists. Rebelle 

and Lalanne (2014), for instance, point out issues of rock typing driving techniques (geological, 

petrophysical and production driving), especially when considering data with different scales 

available in a reservoir. Considering rock typing essentially a petrophysical attributes clustering 

technique, finding correlations between this type of classification, with sedimentary-driven 

geological models at different scales, is always challenging. 

All rock typing methods available have advantages and limitations, especially 

considering the complexity degree of the geological setting and the quantity of data available. 

However, all share the same limitation: the lack of integration with different resolutions and 

data scales. In many examples, rock typing is able to quantify core plug-scale flow 

characteristics in the core domain but fails when upscaling these properties to well logs, not to 

mention for the entire field.  

Considering that rock typing into flow units is purely a petrophysical matter, as pointed 

by several authors, geological parameters (i.e. depositional environments, sedimentological 

texture and diagenesis), in any scale of observation, are not considered during the process. 

Because of the data absence in early stages of reservoir development and high geological 

heterogeneities, propagation of petrophysical properties, like flow units, away from the wells 

and into the 3D geological model, can be very problematic and sometimes results in non-

realistic flow models. Due to the lack of correlation of spatial acquired data (e.g. seismic) and 

the petrophysical properties, spatial geostatistics and stochastic models without constraints are 

often used in the pre-salt carbonate geological model construction. In other geological context, 
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authors have proposed multidisciplinary methodologies for adding geological significance into 

the rock typing workflow, as described in Rebelle and Lalanne (2014), Daraei et al. (2017) and 

Riazi (2018). However, in complex geological settings where a large number of flow units are 

present, the interpolation largely depends on statistical parametrization, as large-scale flow 

units are not mapped and acquired spatial data, like 3D seismic volumes, is not considered in 

the process. 

Recent works attempts to correlate petrophysical flow units with multiple seismic 

attributes. Iravani et al. (2018) used a single FU regression from well-log data and then applied 

to the whole reservoir, having an acoustic impedance seismic volume as constraints. 

Rastergania et al. (2016) and Hatampour et al. (2018) used intelligent systems, like probabilistic 

neural networks and radial basis function networks, to obtain linear relationships between the 

discrete FU and seismic attributes. However, those methods are an extrapolation of the well FU 

classification in the seismic, regardless of the scale difference between data types. In complex 

geology settings, where a great number of FU are calculated, the lack of seismic vertical 

resolution is a problem to address. 

The present study is an approach to characterize large-scale reservoir flow units that can 

correlate with seismic attributes, like p-impedance (PI) and s-impedance (SI). To achieve this 

goal, we propose a modification of the classical flow zone indication (FZI) permeability versus 

porosity rock typing, analyzing a cumulative S-curve like the Lorenz method. In addition, using 

the electrical formation factor method, we calculated flow units (FU) based on well logs of PI 

and SI using the formation factor to discretize the rock typing into FU. Using data from the 

Mero Field, we calculate four major flow units that respond to large-scale flow characteristics 

in the reservoir and are still able to measure some level of flow complexity and correlate with 

elastic attributes. Once those FU are detectable in seismic volumes, we expect to achieve lateral 

predictability, thus providing conditions for the interpolation of core plug-scale FU into 3D 

static and dynamic models. 

2.3 Rock Typing Methods 

Rock typing methods for flow units are available in literature, being widely used in 

reservoir characterization in many reservoir settings. For our purpose, we grouped the most 

common FU rock typing methods into two different categories, named as Porosity-Permeability 

Method, and Electrical Method. 
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2.3.1 Porosity Permeability Methods 

Flow Zone Indication 

Since Amaefule and Altunbay (1993) introduced the flow zone indication (FZI) concept 

based on the Carman-Kozeny model, FZI is widely used to classify rocks with similar flow 

behavior. Studies have shown that the FZI classification correlates with many petrophysical 

properties, such as surface area, pore size distribution, mean pore throat size and nuclear 

magnetic resonance (NMR) relaxation data (Ohen and Ajufo 1995; Basbug and Karpyn 2007; 

D’Windt et al. 2018). FZI is considered a robust method of permeability estimation and 

reservoir prediction in terms of flow heterogeneities, due to petrophysical correlations between 

permeability and flow units (see e.g.: Again et al. 2006; Pritchard et al. 2010; Emami Niri and 

Lumley 2016 and Iravani et al. 2018). 

In the FZI analysis, the first step is to calculate the reservoir quality index (RQI) defined 

as: 

RQI = 0.0314 . ඨ
k

ɸ
 , (1) 

where ɸ is the effective porosity and k is the permeability. Then, the FZI is calculated as: 

FZI =
RQI

ɸ
 , (2) 

with ɸ defined as: 

ɸ =  
ɸ

1 − ɸ
. (3) 

Considering a constant value of FZI, a log-log plot of RQI versus ɸ produce a straight 

line. Samples with similar flow characteristics and FZI values cluster around a corresponding 

unit-slope, determining a flow unit. Samples with different FZI values are plotted on different 

parallel lines. A graph analysis discretizes the sample space into n flow units, but works like 

introduced a way to automate and minimize display errors from a variable named as Hydraulic 

Units (HU): 
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HU = Round [ 2 . ln(FZI) + 10.6]. (4) 

Some authors use RQI to cluster similar flow units applying log to both sides of Eq. 1 

(Xu and Torres-Verdín, 2012). However, Nabawy and Al-Azazi (2015) stated that simultaneous 

usage for both RQI and FZI for reservoir rock typing is not recommended, due to some 

differences in the ranks raised during processing. Instead, they recommend applying the 

reservoir potential index (RPI), which is an average of reservoir quality obtained from both 

parameters. 

Lorenz Plots 

Gunter et al. (1997) applied the so-called stratigraphic modified Lorenz plot (SMLP) to 

evaluate the number of flow units based on a cumulative storage capacity versus cumulative 

flow capacity S-curve, ordered in the stratigraphic sequence. The equation to calculate a single 

value of cumulative flow capacity (𝑘ு) is: 

kୌ =  kଵ(Hଵ − Hଶ) + kଶ(Hଶ − Hଷ) + ⋯ k୧(H୧ − H୧ାଵ), (5) 

where the term H୧ − H୧ାଵ is the depth difference between subsequent samples i and i + 1. A 

similar equation calculates the cumulative storage (∅ୌ) capacity: 

∅ୌ =  ∅ଵ(Hଵ − Hଶ) + ∅ଶ(Hଶ −  Hଷ) + ⋯ ∅୧(H୧ − H୧ାଵ). (6) 

The slope variation analysis in the segments of the 𝑘ு versus ∅ு plot is interpreted as 

the main flow units in the dataset. Steeper parts of the curve are called “speed zones” and relates 

with better quality facies in terms of flow capacity. On the other hand, flat segments are 

interpreted as seals or baffle zones. Some authors have used an integrated approach with other 

methods, like FZI and mercury injections to determine the minimum amount of flow units, as 

shown in Alhashmi (2016), Daraei et al. (2017) and Riazi (2018). 

2.3.2 Electrical Methods 

Electrical Quality Index 

Electrical properties of reservoir rocks are important for calculating water saturation. In 

laboratory, these properties are determined by testing rock samples under simulated 

temperature and overburden pressure conditions. 
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An analogy between hydraulical and electrical rock properties can be made based on the 

concept of transmissibility. Permeability or hydraulic conductivity is the ability of a porous 

medium to conduct a fluid. Permeability can be determined from Darcy’s equation. Electrical 

conductivity of a saturated sample is the capacity of this rock to allow electrical transmission 

through its pore structure. Ohm’s law calculates rock electrical conductivity. Both Darcy and 

Ohm equations are transport equations whose general form is: 

Q = Transport property of the medium x A x 
d∅

dl
, (7) 

where Q is the transfer rate, A is the cross-sectional area and 
ୢ∅

ୢ୪
 is the potential gradient that is 

the driving force. If the transport property in Eq. 7 is considered as permeability and electrical 

conductivity, 
ୢ∅

ୢ୪
 is assumed as pressure gradient (in Darcy’s law) or voltage drop (in Ohm’s 

law); then Darcy’s and Ohm’s equations are obtained respectively. Therefore, it is evident that 

there is an analogy between permeability and electrical conductivity of a rock sample. 

The resistivity of a rock is mainly function of matrix porosity, pore geometry and 

resistivity of the fluid filling the porous space. For a fully water saturated rock, Archie (1942) 

defined the following relationship: 

R = F . R୵, (8) 

where R is the formation resistivity at 100% brine saturation, R୵ is the brine resistivity and F 

is the formation resistivity factor (or formation factor). Then, the formation resistivity versus 

porosity in a log-log graph can display the following linear trend: 

F =
α

∅୫
, (9) 

where α is defined as a tortuosity factor (considered as equal to 1 in this work) and m is called 

cementation factor, also porosity exponent. 

The resistivity of a clean rock (R୲) is a function of water saturation (S୵), formation 

water resistivity (R୵) and rock structure, which is represented by the formation factor F: 

R୲ = F . R୵/S୵
୬ , (10) 
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where n is the saturation exponent. The cementation factor, saturation exponent and tortuosity 

factor are electrical parameters and are used in the Archie equation for calculating water 

saturation from resistivity logs. The cementation factor and tortuosity factor are dependent on 

pore geometry, which it is controlled by various textural rock properties. Authors like Hassani-

Giv and Rahimi (2008) and Ghanbarian et al. (2019) provide considerations about the influence 

of these parameters in reservoirs. In fact, some researchers show that the cementation factor 

and tortuosity are interdependent, that is, a rock sample with higher tortuosity generates a longer 

path for electric flow, which implies higher values of m (Rezaee et al. 2007). 

Based on an analogy of the RQI defined in Eq. 1, Soleymanzadeh et al. (2018) defined 

the parameter EQI (electrical quality index) as: 

EQI = ඨ
σ

∅
 

1

σ୵
=  ඨ

1

F ∅
, (11) 

where σ is the electrical conductivity of water-saturated rock, σ୵ is the electrical conductivity 

of saturant water, F is the formation factor and ∅ is the porosity. Soleymanzadeh et al. (2018) 

state that permeability and electrical conductivity are two equivalent transport properties. 

Therefore, clustering rock samples with similar EQI plays the same role as grouping similar 

RQI rocks in terms of fluid flow properties. In other words, rock samples with similar values of 

EQI are expected to have similar electrical behavior and the EQI value can be used to categorize 

F data into distinct groups. Each of these groups represent a linear trend on a log-log plot of F 

versus ∅. 

Formation Factor Mehod 

Ghanbarian et al. (2019) proposed a method for clustering flow units based on the 

permeability and the formation factor. They state that most rock typing methods calculated 

through permeability (k) versus porosity (∅) templates ignore the effect of the formation factor. 

In the Archie method, for instance, the cementation exponent in Eq. 9 represents this effect 

indirectly. This is because both k and F are complex functions of the porosity, while the porosity 

is only a measure of the pore volume and does not provide information on the dynamically 

connected pores. 

Instead of using the k versus ∅ template, Ghanbarian et al. (2019) used a rock typing 

classification based on k versus −1/F plot, grouping samples with similar connected pores. 
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According to the authors, this would avoid non-connected pores induced errors into the classical 

permeability versus porosity templates. 

2.4 Considerations about Seismic Scale, Sequence Stratigraphy and Flow 

Units 

Geological stratigraphic cyclicity can be observed at different scales, as discussed by 

Strasser et al. (2007) and Catuneanu (2019). At each scale of observation (i.e., core and plug 

data, well log, and seismic data), the construction of stratigraphic framework for a reservoir is 

represented by sequences, and their component systems tracts and depositional systems. 

Catuneanu (2019) defines that at core plug-scales, system tracts and component 

depositional systems consist of sedimentological cycles (for example, beds and bedsets), 

commonly observed at scales of 1 to 10 meters. At larges scales, systems tracts and depositional 

systems consist of lower rank stratigraphic cycles, which are called sequences (hundreds of 

meters thick). For instance, on shorter timescales, stratigraphic cyclicity is controlled by tidal 

cycles, storm-fairweather cycles, and seasonal changes. Tectonic events, compaction and long 

glacial cycles define long-term changes, which define the sequences. 

This cyclicity reasoning also applies to FU definition, as one of the major factors 

controlling porosity obliteration and dissolution are related to stratigraphic events, in shorter or 

longer time scales of observations. Rock typing for flow units in centimetric data (like well 

logs) and metric data (like seismic) produces different results, although all represent the same 

geological construction process. Core plug-scale flow unit definition has great relevance in 

dissolution and dolomitization numerical studies. Therefore, large-scale flow unit correlate 

directly with flow simulators and 4D seismic studies, as oil, water and gas fronts will be 

detected according to seismic vertical resolution and the cell dimension of the flow simulator, 

usually dozen of meters. 

Determining the core plug-scale flow performance, as well as large-scale, are equally 

important, and comprises different stages of the geological building process from a reservoir. 

2.5 Study Area and Data Available 

The Mero Field is a part of the giant Libra discovery, located in the northeastern portion 

of the Santos Basin, in the ultra-deep water of the Atlantic Ocean (Fig. 1). In 2013, the first 

bidding round executed by the Brazilian government under the new production-sharing contract 
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for pre-salt areas offered the Libra area. The winning consortium is comprised of Petrobras 

(operator), Shell, Total, CNOOC and CNPC, overseen by PPSA (Pré-Sal Petróleo SA). 

 

Fig. 1 — (left) Mero Field and Libra location in Santos Basin, southeast Brazil. (right) Typical 

W-E seismic section in Mero Field. The main plays, displayed as thin sections, are stromatolites 

from Barra Velha Formation and coquines from Itapema Formation. 

Libra initial estimates indicate an oil in place volume of between 8 and 12 billion BOE 

in carbonate reservoirs (Carlotto et al. 2017), with high geological complexity in terms of 

stratigraphic facies (Penna et al. 2019). The discovery well found reservoirs with high porosity 

and permeability in the Itapema and Barra Velha formations (Barremian and Aptian ages, 

respectively), with about 600m net-pay column. Since then, 17 wells were drilled in the area. 

The main plays are coquinas from the Itapema Formation and stromatolites from the Barra 

Velha Formation, although high porosity is also found in grainstones, floatstones and others 

carbonate facies (Jesus et al. 2019). Fig. 2 shows the structural map of the salt base and the 

main pre-salt lithologies drilled in the area. Low porosity fine-grained carbonates, such as 

mudstone (classified, for simplification, as microporous sediments) are distinguishable, as well 

as extrusive and intrusive igneous rocks. 
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Fig. 2 —(left) Main subsalt facies in the Mero Field. (right) Structural map of the salt base and 

well positions. 

One of the characteristics of fluid produced in the Mero Field is the high content of CO2 

(44% in the gas phase). So, performing a conventional extended well test (EWT) would lead to 

a very limited oil rate, due to the gas-flaring limit imposed by the environmental agency. For 

this reason, Petrobras proposed to contract a Floating Production Storage and Offloading 

(FPSO) designed to reinject all gas produced during the EWT, which started in the end of 2016 

and became the first offshore well test with gas reinjection in the world (Moczydlower et al. 

2019). This FPSO is used in wells of the field performing EWT in different production-injection 

pairs. In order to accelerate production, the wells drilled by the consortium are keepers, and 

will be used as producers or WAG (water alternating gas injectors). A total of 11 drill stem tests 

(DSTs) have been performed in 8 wells and 9 production logging tests (PLTs) was realized in 

this field.  

Almost 500m of cores were taken in different stratigraphic intervals. The dataset 

comprises about 1700 core and plug porosity measurements and horizontal permeability 

measurements from the 17 wells in the field, containing both the Barra Velha and Itapema 

formations. 15 electrical petrophysical analysis from one well are also available, mostly in 

grainstones and rudstones facies from both geological formations. 

We used the Dykstra-Parsons coefficient (𝑉ௗ) to quantify the level of heterogeneity in 

the Barra Velha and Itapema reservoirs, which is defined as: 
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𝑉ௗ =
(𝑘ହ − 𝑘଼ସ.ଵ)

𝑘ହ
, (12) 

where 𝑘ହ and 𝑘଼ସ.ଵ are, respectively, the permeability value at the 50th percentile (median) 

and 84.1 percentile in decreasing permeability ordered data (Fig. 3). The heterogeneity value 

of 𝑘, considering all the samples from the conventional core analysis, is 0.99. Typical k values 

ranges go from zero (homogeneous) to 1 (highly heterogeneous). 

 

Fig. 3 — Dykstra-Parsons coefficient plot. The level of heterogeneity calculated is about 0.99. 

Typical ranges go from 0 (homogeneous) to 1 (highly heterogeneous). 

2.6 Flow Units Classification 

We used three methodologies for the flow unit classification. First, we analyzed the 

stratigraphic modified Lorenz plots using core permeability and porosity values to determine 

the minimum number of FUs. Then, considering speed zones as steep curves segments and 

seals/baffle zones as flat segments, we suggest a modification of the classical FZI method, 

analyzing the derivatives of cumulated percentiles of the permeability versus log(FZI) S-curve 

to discretize flow units. 

Based on the results of the core electrical property analysis, we calculated logs of 

electrical formation factor (𝐹) and cementation factor (𝑚) using the well log data. Then, we 

discretize in flow units applying threshold values in the histogram of the formation factor results 

on a p-impedance versus s-impedance crossplot. 
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Fig. 4 summarizes the workflows for the three methods proposed in this work, 

considering that “core domain” is related to data analysis and interpretations made in the Mero 

Field core and plug dataset; “well domain” are the calculations using well-log data and “seismic 

frequency domain” are the analysis made with filtered versions of well-logs. 

2.6.1 Stratigraphic Modified Lorenz Plots (SMLP) 

We calculated the storage capacity and flow capacity for the Barra Velha and Itapema 

formations using the Eqs. 5 and 6 and re-ordering the data in crescent depth values. The SMLP 

is constructed plotting the normalized values of both variables, as shown in Fig. 5. Analyzing 

the slope variation of the curve, we can deduce a minimum number of four main flow units for 

the reservoir of the Mero Field, although it is possible to observe more FUs as a higher 

frequency variation. We are considering four flow units as a minimum amount of units to 

guarantee a correlation with the spatial data available – seismic data, which has lower vertical 

resolution. Considering the level of flow heterogeneity present, this will result in some 

calculation errors. However, we expect to obtain lateral predictability with flow units that can 

correlate vertically and spatially with seismic volumes. 

 

Fig. 4 — Workflow summarizing the methodologies proposed in this work. 
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An approach from the Lorenz method proposed in this study is to analyze a cumulative 

S-curve of permeability versus porosity, which removes vertical core and plug sampling bias 

present in Eqs. 5 and 6. Porosity values were sorted in increasing order and with the 

accumulated sum of the corresponding permeability was constructed the graph shown in Fig. 

6. Then, we determined porosity cut-offs values to discretize the LPFU (Lorenz Plot flow units) 

analyzing the changes of the S-curve slope. This was also described in Lalanne and Massonnat’s 

(2004), as they noticed that applying cut-offs to cumulated curves of net volumes generate 

discrete facies data, which produce less previsibility errors in the final reservoir model and 

reduced upscale bias. In summary, the following steps are used to construct the Lorenz’s S-

Curve: 

1. Calculate percentiles of porosity and permeability core and plug dataset; 

2. Porosity values are sorted in increasing order; 

3. Accumulate and normalize the percentiles of permeability values; 

4. Calculate the slope of the curve for each sample. 

 

Fig. 5 — Stratigraphic Modified Lorenz plot discretizing a minimal of four large-scale flow 

units (FU) in the Barra Velha and Itapema formations. Steeper segments correspond to better 

zones in terms of flow capacity, while flat segments are related to barriers and baffle zones. 

Core plug-scale flow can be identified analyzing each steep/flat segment of the curve. 
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The interpretation of each LPFU is similar as described by Gunter et al. (1997). Flat 

segments can have storage capacity, depending on the porosity value, but little or no flow 

capacity. Steep segments are speed zones and add great value for the reservoir flow. LPFU1, 

where the curve does not show any detachment from the horizontal axis and none or little 

cumulative permeability, can be considered a flow barriers or no-flow zones in reservoir 

dynamic modelling, if laterally extensive. 

LPFU2 is interpreted as the beginning of the curve detachment from the X-axis until the 

first ramp up of the line. This unit also has little storage capacity but shows a better flow 

capacity than the first. In aquifers, for instance, mapping LPFU2 can be crucial for 

understanding pressure maintenance in reservoir and the underlying aquifer studies. 
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Fig. 6 — Cumulative permeability S-Curve plot for the Modifed Lorenz Plot flow units 

classification (LPFU). The porosity cut-offs to discretize the LPFUs were interpreted as the 

major changes in the slope. 
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LPFU3 and LPFU4 are interpreted as the subsequent major changes in the slope, having 

better porosity and permeability properties. LPFU3 denotes medium to good reservoir facies in 

terms of fluid performance, with porosities varying from 11 to 15% and decent flow capacity. 

LPFU4, presenting a steeper ramp (speed zone), is the best flow unit, and significantly 

contributes to the reservoir flow performance. Table 1 describes the cut-off ranges used 

considering the classification in both the Barra Velha and Itapema formations. 

As seen in the SMLP (Fig. 5), the cumulative S-curve (Fig. 6) also suggests a larger 

number of flow units to the reservoir. However, we chose to interpret only major changes in 

flow performance, i.e., greatest slope variations in the Lorenz plots. This is similar in higher 

frequency sequence stratigraphic interpretations, when geologists separate between higher 

order (low frequency) changes in the base level caused by regional subsidence/upwelling and 

low order (high frequency) changes in the base level due to seasonal and diurnal variations. As 

seismic data lacks vertical resolution, higher order variations are detected in p-impedance and 

s-impedance volumes.  

Fig. 7 shows the core and plug S-curve hydraulical unit discretization applied to two 

wells in the Mero Field using the well logs. As expected, areas with low porosity/permeability 

values are concentrated within LPFU1 and LPFU2 facies, while areas with better flow 

performance relate to LPFU3 and LPFU4. 

Table 1 — FU and porosities cut-offs used in the S-curve of Fig. 6. 

 Porosity cut-offs 

LPFU1 below 6 % 

LPFU2 6 to 11 % 

LPFU3 11 to 15 % 

LPFU4 above 15 % 
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Fig. 7 — Lorenz S-curve classification of LPFU applied to wells 01 and 03.  
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2.6.2 FZI Classification 

As detailed in section 2.3.1, FZI classification is a very popular method of reservoir 

rock typing for flow units. The reservoir quality index (RQI) defined in Eq. 1 is the net result 

of the porosity contribution to the permeability, which, in turn, are ruled by the pore size, shape 

and distribution. RQI and FZI are the key parameters for measuring the potential of 

petrophysical properties of a rock sequence, assessing the ability of the reservoir for storing and 

accumulating hydrocarbons (Li et al. 2017). However, diagenetic factors can obliterate the 

primary porosity or generate connected or isolated karsts and vugular structures. Herlinger et 

al.’s (2017) pre-salt studies, located in the Campos Basin, shows how the balance between 

dissolution and neomorphism, redeposition of sediments into deep lacustrine settings, 

replacement of minerals and dolomitization affect many levels of porosity in Brazilian 

carbonate rocks. 

Considering the presence of such level of heterogeneity, the usual workflow of FZI/RQI 

rock typing (Eqs. 1 to 4) produces a large number of flow units, as shown in Fig. 8. Workflows 

based on neural networks (Dezfoolian, 2013 and Hatampour et al. 2014) also reproduce the 

heterogeneity and create many units. Dealing with this amount of FUs during the construction 

of the geologic and dynamic modelling is quite problematic, as FUs often have no correlation 

with the stratigraphic depositional facies 3D modelling trends usually made in most reservoir 

characterizations. In that sense, we prefer to discretize FZI rock typing in permeability 

cumulative S-curve, using percentiles of the k and ∅ dataset and analyzing the slope variation, 

like the workflow described in 2.6.1 section. This is like the Lorenz method, considering that 

the FZI value itself is an estimation of pore throat size. 

Steps to construct the FZI S-curve: 

1. Calculate porosity and permeability percentiles of the core and plug dataset; 

2. Calculate RQI and FZI using Eqs. 1 to 3 and the percentiles values; 

3. Order the data with increasing values of 𝑙𝑜𝑔(𝐹𝑍𝐼); 

4. Accumulate and normalize the percentiles of permeability values; 

5. Calculate the slope of the curve for each sample. 
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Fig. 8 — Usual FZI/HU workflow applied to Mero Field reservoirs, calculating 11 hydraulic 

units in the Barra Velha and Itapema formations. 

Fig. 9 shows the S-curve percentiles plot of permeability versus 𝑙𝑜𝑔(𝐹𝑍𝐼). We 

discretize the FU analyzing the values of 𝑙𝑜𝑔(𝐹𝑍𝐼) corresponding to major changes in the slope, 

like the Lorenz plots described before. We identified four major flow units and named them as 

FZI1, FZI2, FZI3 and FZI4. 

FZI1 corresponds to the initial flat segment of the curve, with poor flow performance 

and probably a barrier or baffle zone. FZI2 relates to the initial detachment of the curve, with 

reduced but considerable flow capacity in the seismic scale. FZI3 relates to the first ramp up 

after the FZI2 cut-off value and an increasing steep curve. This is a higher permeability 

reservoir rock. Finally, FZI4 corresponds to the better flow characteristics and relates to the 

final step of the S-curve.   
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Table 2 summarizes the 𝑙𝑜𝑔(𝐹𝑍𝐼) rock typing using the FZI method. 
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Table 2 — FU and log(FZI) cut-offs used in the S-curve of Fig. 9. 

 Log(FZI) values 

FZI1 below -0.5 

FZI2 -0.5 to 0.67 

FZI3 0.67 to 1.49 

FZI4 above 1.49 

Fig. 10 shows the cut-off application and FU classification in two well logs in the Mero 

Field. Note that igneous rocks and carbonates with recrystallized silica are classified as FZI1, 

with low porosity-permeability values. This is shown in the top of the Well 03 (where a massive 

intrusive igneous rock is present in the salt / carbonate interface) and in the middle of the well 

03 and end of well 01, where primary porosity is obliterated by secondary processes. Low-

energy carbonates with fine sediments, as laminite and siltites, are classified as FZI2, as seen 

in the final part of the well 03. Better porosity carbonates are divided between FZI3 and FZI4, 

depending on the porosity/permeability conditions. 

Fig. 11 exemplifies how the classification segments the data in the semilog plot of 

permeability versus porosity. It is quite evident that there is a scatter around each FU, 

suggesting that a high frequency order of classification is possible. Analyzing each variation of 

the slope in Fig. 9 would probably lead us to the 11 FUs mentioned before. However, 

interpreting only major changes in the percentiles of the cumulative S-curve allow us to obtain 

the main flow zones in the reservoir at a larger scale, which are more likely to be detected in 

seismic volumes. Pursuing the seismic data constraint, we will gain lateral detection of the FUs, 

but lose vertical resolution. This is a trade-off that we need to manage for data integration with 

different resolutions.  
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Fig. 9 — (a) Cumulative permeability S-Curve plot; (b) The log(FZI) cut-offs to discretize the 

FUs were interpreted as the major changes in the slope. 



46 

 
 

 

Fig. 10 — FZI cumulative S-curve classification of flow units applied to wells 01 and 03. 

We compared the calculated permeability (using the equations per facies shown in Fig. 

11) versus the measurement permeability in conventional core analysis (Fig. 12) to evaluate the 

proposed classification. It is observed that the majority of scattering occurs at the lowest 

permeability values, while for higher values above 1 mD the relative error is about 5%. 
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Fig. 11 — FZI flow units calculated from the S-curve segmentation in Fig. 8. Each of the four 

HU correspond to a permeability versus porosity fit in the semilog plot. 

An example of how difficult it is to incorporate FZI flow units into geological models 

is exemplified in Fig. 13. Each FU shows a wide variety of sedimentary facies, with no 

relationship between FU facies and carbonate facies. For example, FZI3 and FZI4, which 

corresponds to the better flow performance in the reservoir, are not directly related to 

stromatolites (boundstone) and coquinas, the main facies in the Mero Field. Importantly, most 

static models are based upon modern analogs, geological setting premises and sedimentary 

facies distribution. 
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Fig. 12 — Measured versus calculated permeability through the S-curve analysis using the 

log(FZI) values. Note how most of the dispersion occur at low values of permeability. 

2.6.3 Formation Factor 

The formation factor, 𝐹, can be used to classify and cluster FU in a 𝑘 versus -1/𝐹 plot, 

as proposed by Ghanbarian et al. (2019). They argue that methods based on 𝑘 versus ∅ plots 

ignore the effect of dynamically connected pores. In the formation factor (FF) and electrical 

methods, this connectivity effect is represented indirectly by the cementation exponent m, 

providing a better porosity estimation than usual methods based only in permeability and 

porosity ratios. 

Adapting ideas of Ghanbarian et al. (2019) and considering our objective of obtaining 

a rock typing suitable to seismic resolution, we propose a classification of flow units by 

analyzing the formation factor distribution on the p-impedance versus s-impedance crossplot 

filtered for seismic data sampling rate (4ms). It is important to mention that the Mero Field has 

only 12 raw electrical measures in core and plug samples (4 and 8 samples in the Barra Velha 

and Itapema formations, respectively). Therefore, it was necessary to supplement the 

classification using well log information. 
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Fig. 13 —Sedimentary facies descriptions and distribution in each of the flow units calculated 

in the core samples of the Mero Field. 

We analyzed the porosity versus formation factor to verify its linearity and whether, 

accordingly, Archie's law applies to our dataset. In Fig. 14, the gradient of the line is the 

cementation factor, 𝑚, and the intercept is the tortuosity factor. Table 3 summarizes the mean 

values of the electrical measurements in the Mero Field samples from Barra Vela and Itapema 

formations. 
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Fig. 14 — Porosity versus formation factor crossplot from core and plug electrical 

measurements of the Mero Field. 

Table 3 — Mean and standard deviation (STD) from electrical measurements in core and plug 

samples. 

Barra Velha Formation Mean STD 

Permeability (𝑘, mD) 63.64 44.66 

Porosity (ɸ, frac.) 18.48 1.17 

Water Saturation (𝑆𝑤) 20.96 2.76 

Formation Factor (𝐹) 40.4 7.89 

Cementation Exponent 

(𝑚) 

2.17 0.08 

Saturation Exponent (𝑛) 4.5 1.16 
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Itapema Formation Mean STD 

Permeability (𝑘) 237.72 291.22 

Porosity (ɸ) 17.94 2.62 

Water Saturation (𝑆𝑤) 19.15 5.47 

Formation Factor (𝐹) 73.6 30.06 

Cementation Exponent (𝑚) 2.45 0.3 

Saturation Exponent (𝑁) 4.27 1.08 

Formation factor logs can be calculated using Eq. 9, the effective porosity from NMR 

log and the mean values for m and α. However, this can lead to error in rock typing 

classification, because the use of a value for the cementation and the tortuosity factor neglect 

the importance of those elements. As described in El Sharawy and Nabawy (2018) and 

Soleymanzadeh et al. (2018), m depends greatly on diagenetic processes.  

The cementation factor log can be calculated from Archie’s empirical relationship: 

RI =  
R

R
=  

1

S୵
୬

, (13) 

where RI is the resistivity index (in Ω.m), R is the formation resistivity (in Ω.m) and R is the 

water saturated rock resistivity (in Ω.m). Replacing R from Eq. 8 in Eq. 13 obtain: 

F. R୵ =  R . S୵
୬ , (14) 

1

∅୫
=  

R.  S୵
୬

R୵
, 

(15) 

Applying log to both side of equations and isolating the cementation exponent: 

𝑚 =  
𝑙𝑜𝑔(𝑅௪) − 𝑛 𝑙𝑜𝑔(𝑆௪) − 𝑙𝑜𝑔 (𝑅்)

𝑙𝑜𝑔 (∅)
, (16) 
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where R is the formation resistivity (or the deepest resistivity log, in Ω.m), S୵ is the matrix 

water saturation log, R୵ is the formation water resistivity (0.016 Ω.m in the reservoirs) and n 

is the saturation exponent (it was used the mean value obtained from core and plug data). 

Fig. 15 shows the formation factor log estimated in well 12. It can be observed that F 

correlates directly with the p-impedance and s-impedance logs and inversely with the porosity 

and permeability logs. Areas with low porosity, igneous and cemented carbonate rocks, show 

high values of impedances and F. As expected, reservoir rocks with good permo-porous 

conditions show low values of impedances and F. 

 

Fig. 15 — Formation factor log calculation using variable values of cementation factor 𝑚. Note 

how the 𝐹 correlates with both p-impedance and s-impedance logs. 

The impedance-p (PI), impedance-s (SI) and formation factor logs of Fig. 15 were 

filtered for seismic resolution to analyze their correlations. Fig. 16 shows the crossplot of the 

PI versus SI color coded by 𝐹 values. It is possible to distinguish the trend of PI versus SI and 

𝐹, with better quality reservoir rocks in the bottom left of the plot and igneous and cemented 

carbonates concentrated in the upper right. This trend was also observed considering lithology 

related seismic facies (Penna et al., 2019). 



53 

 
 

 

Fig. 16 —P-impedance versus s-impedance crossplot color-coded by the formation factor. 

Good quality reservoir rocks occur mostly on the bottom-left side, while cemented carbonate 

and igneous rocks cluster in the upper-right. 

Cumulative S-curves of 𝐹 versus 𝑘 core measurements can be analyzed in terms of steep 

and flat segments (Fig. 17), like that shown in the SMLP and FZI methods (Fig. 6 and Fig. 9). 

Due to the lack of numerous electrical experimental measurements (only 12 samples), we only 

see a small portion of the real S-curve, missing where occurs the major changes in the flow 

performance. 

 

Fig. 17 —Formation factor versus cumulative normalized permeability from the core and plug 

electrical analysis. We choose not to use the S-curve segmentation to produce the 𝐹 rock typing 

due to the limited number of samples.  
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The proposed approach to detect the major changes in 𝐹 values is to analyze the 

histogram of 𝐹 values from the well log data. As shown in Fig. 18, major changes in the 𝐹 

distribution can be interpreted as considerable jumps in the histogram. To maintain the same 

meaning of FUs used in the Lorenz and FZI methods, we classified FF1 as the flat final part of 

the histogram with higher values of 𝐹 (hence, low quality rocks in permo-porous terms), while 

FF4 is the initial segment of the histogram with lower 𝐹 values and a constant rate of variation. 

FF3 is interpreted as the first major change in the histogram, while FF2 is defined between the 

beginning of the ramp down until the flat final part that characterizes FU1. Table 4 summarizes 

the cut-offs defined in the histogram in Fig. 18. 

 

Fig. 18 —Histogram of formation factor well log and discretization based on the major changes 

of 𝐹 values. 

Fig. 19 exemplifies the segmentation proposed in Fig. 18 applied to wells 01 and 03. 

Both FZI and 𝐹 classifications have aspects in common, although some differences occur. The 

cut-off range choices in the S-curve analysis and in the histogram have influence on the 

classifications, once it is a qualitative segmentation. We believe that the rock connectivity of 

the porous structure plays an important role in the formation factor analysis. The FZI method 

neglect this effect, because it approximates only the pore throat radius, as discussed by 

Ghanbarian et al. (2019). Fig. 20 shows the comparison of the FZI and FF rock typing 

classifications in a section of the Itapema Formation with high degree of carbonate dissolution, 

identified in the acoustic image log, in a cemented matrix interval. Because of the vugular 

porosity, this segment present great storage capacity, but reduced flow capacity, due to low 

connectivity of the pores. Note that the FZI method classifies this interval as FZI3, with good 
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permo-porous characteristics, while the FF method identified as FF1. According to Ghanbarian 

et al. (2019), this is the expected effect when using the formation factor instead of the porosity. 

Table 4 — FU and Formation Factor cut-offs values used in the histogram of Fig. 18. 

 F values 

FF1 above 150 

FF2 90 to 150 

FF3 50 to 90 

FF4 below 50 

2.7 Flow Units and Elastic Parameters Correlations 

Large-scale flow units can be correlated with seismic attributes to assure their spatial 

detections in acquired 3D data. Therefore, the resulting rock typing must separate a FU from 

another in the elastic space. To check how much the seismic dataset available can detect the 

major flow units in the elastic domain, we perform a 1D feasibility study considering p-

impedance and s-impedance crossplots color coded by rock typing discretization methods. We 

analyze the flow units correlation with the elastic parameters at both the well and seismic scales, 

using high-cut frequency filtered version of the logs in order to represent the seismic vertical 

sampling of the area (to generate high-cut well logs, we considered a peak frequency of 20Hz 

with maximum 40Hz, compatible to the frequency characteristics of the seismic dataset).  

Fig. 21 shows the Lorenz S-curve rock typing using the cut-offs defined in Table 1. 

LPFU, FZI and FF flow units 1 to 4 are better defined in the elastic domain for both well log 

and seismic scales. Each flow units can adjust a probability density function (pdf) and classify 

flow facies through probabilistic methods, using p-impedance and s-impedance volumes. 

The same analysis of flow units and elastic parameters, in both well log and seismic 

scales, was performed using the rock typing provided by the FZI S-curve and formation factor 

(FF) approaches. (Fig. 22 and Fig. 23, respectively). It is observed that the LPFU classification 

is slightly better defined in the elastic domain, compared to the other two approaches. This is 

an expected result, considering the classical impedance – porosity relationship that forms the 

basis for most petrophysical studies using compressional and shear velocities.  
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A quantitative analysis was performed to verify whether rock typing can be 

distinguishable using elastic parameters in seismic scale. We used high-cut filtered versions of 

the p-impedance and s-impedance logs in a Bayesian facies classification workflow to analyze 

the FZI S-curve classification according to the seismic resolution. 

Bayesian’s theorem describes the posterior probability p(m | z) of the parameters model 

m  given the observed data z from: 

p(m | z) =  
p(m) .  p(z | m)

p(z)
, (17) 

where p(m)  and p(z) are the probabilities of observing m and z independently, respectively, 

and p(z | m) is the conditional probability the z given m. 

Considering our purpose to classify FU from the PI and SI, Eq. 17 can be written as: 

p(FU | PI, SI) =  
p(FU) .  p(PI,   SI | FU)

p(PI,   SI)
. (18) 

For seismic facies classification, p(FU) corresponds to a priori estimation of the 

probability of each facies at well scale. The term p(PI,   SI | HU) is the probability density 

function adjusted for each FU in the p-impedance versus s-impedance crossplot and p(PI,   SI) 

is a normalization factor (joint probability of PI and SI). Fig. 24 shows the FU classification 

and the posteriori probabilities of the FUs from the Bayesian classification, considering high-

cut filtered versions of the PI and SI logs as inputs mimicking the seismic vertical sampling 

condition. Analyzing Fig. 24 is reasonable to mention that the lack of seismic vertical resolution 

acts as a smoothing factor of the rock typing. This effect is a trade-off that the method we are 

proposing must deal with, considering the loss of vertical discretization capacity. 
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Fig. 19 —Classification of flow units from the formation factor histogram classification applied 

to wells 01 and 03. 
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Fig. 20 —Classifications from the FZI S-curve and formation factor histogram analysis. The 

region with non-connected vugular porosity is classified as FZI3 by the FZI rock typing and as 

FF1 in the 𝐹 rock typing. 
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Fig. 21 —PI and SI coded by the Lorenz rock typing classification in the well log sampling 

(above) and in the seismic sampling (below). Flow units 1 to 4 are well defined in the elastic 

domain, even considering the low vertical resolution of the Mero seismic dataset. P-Impedance 

and S-Impedance in units of (m/s) (g/cm3). 

 

Fig. 22 —PI and SI coded by the FZI S-curve rock typing classification in the well log sampling 

(above) and in the seismic sampling (below). Flow units 1 to 4 are well defined in the elastic 

domain, even considering the low vertical resolution of the Mero seismic dataset. P-Impedance 

and S-Impedance in units of (m/s) (g/cm3). 
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Fig. 23 —PI and SI coded by the formation factor rock typing classification in the well log 

sampling (above) and in the seismic sampling (below). Flow units 1 to 4 are well defined in the 

elastic domain, even considering the low vertical resolution of the Mero Field seismic dataset. 

P-Impedance and S-Impedance in units of (m/s) (g/cm3). 

 

Fig. 24 —Bayesian 1D classification of the FZI S-curve FU in seismic scale from the PI and SI 

logs. Note that the seismic resolution acts as a smoothing factor of the rock typing. 
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As an example, for assessing the reliability of seismic resolution results, we compared 

the absolute permeabilities obtained from the large-scale FZI, the geological model and the 

extended well-test (EWT) adjusted in flow simulator (Fig. 25). The large-scale FZI absolute 

permeability was calculated per flow unit using the equations shown in Fig. 11, while the 

absolute permeability from the geological static model consists of a complex sedimentological 

facies-based 3D modelling populated with geostatistics constraints and conceptual model 

inferences built by the Mero Field asset team. Some details about the general methodology of 

the 3D depositional building can be found in Faria et al. (2017). Absolute permeability and 

porosity values where populated in a fine-grid with stochastic simulation considering each 

depositional facies and the corresponding conventional core analysis results. The geological 

fine-grid were upscaled to the flow simulator using a tensor technique. After the extended well-

test performed in the reservoir, the flow simulator has been updated considering the observed 

dynamic results. Some high-permeability corridors where manually constructed and given 

zones penalized or increased in terms of absolute permeability and porosity values, resulting in 

an adjusted absolute permeability. As seen in Fig. 25, in several well segments, the large-scale 

FZI provides a closer result than the geological static model, considering the EWT adjusted 

permeability as a benchmark. This result suggests that the incorporation of large-scale flow 

units as constraints during the conceptual geological model building would provide results that 

are more accurate to the dynamic data of the reservoir. 

 

Fig. 25 —Comparison of the permeabilities obtained from the large-scale FZI (blue line), the 

geological static model (red line) and the adjusted EWT flow simulation model (black line). 

The large-scale FZI permeability is closer to the EWT adjusted data in several sections. 
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2.8 Conclusions 

Conventional rock typing workflows in well log resolution are accurate describing flow 

behavior in the pore and core domain. However, interpolating flow units to the whole reservoir 

are typically difficult due to the lack of correlation with sedimentary facies and data integration 

at different scales. In most situations, upscaling and downscaling only dilute this problem, and 

the interpolation are greatly dependent of geostatistical constraints. We argue that large-scale 

flow units calculated through a cumulative S-curve are those that respond for major fluid 

movements in the reservoir and must be considered for flow simulation, especially when 

incorporating time-lapse seismic interpretations and seismic assisted history matching. We 

argue that maps and spatial data based on these flow units like maps and volumes will provide 

valuable insights into any flow simulation workflow. 

As seen in the 1D feasibility study, large-scale flow units can be successfully identified 

in seismic through elastic inversion volumes, providing lateral predictability and supporting the 

geological and the flow simulator 3D building, with results more appropriate to the dynamic 

data of the reservoir. When comparing the permeability derived from the conceptual geological 

model with the permeability obtained by the FZI S-curve analysis, we noticed that the large-

scale flow units provide a better estimation of the absolute permeability, considering the flow 

simulator adjusted permeability with the extended well-test results as a benchmark. 

At the well scale, we noticed that rock typing for formation factor presents an advantage 

over the FZI method, as it considers the connected pore structure present in the rock sample. 

Cemented carbonates with vugular porosity zones where better classified in the formation factor 

rock typing method in terms of flow capacity.  
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3. 3D Modelling of Flow Units and Petrophysical Properties in 

Brazilian Presalt Carbonate 

Article published in 

Marine and Petroleum Geology, Vol. 124, 2021. 

Impact Factor: 5.361 

Authors: Rodrigo Penna and Wagner Moreira Lupinacci 

3.1 Abstract 

Rock typing into flow units (FU) is a well-known technique for characterizing flow 

heterogeneities in reservoirs and producing reliable estimations of petrophysical properties, as 

porosity and permeability. Several methods that correlate pore-throat size with permeability 

and porosity in the core and well-log domains are available in the literature, being the flow zone 

indicator (FZI) method the most common used in both clastic and carbonate reservoirs. 

Extrapolating the flow units rock typing from the core and well-log scales into the whole 

reservoir is a major challenge due to the lack of correlation with sedimentological facies and 

available data scale differences. Most 3D generations of flow units and petrophysical properties 

are merely a geostatistical procedure, without any spatial data constraints (like seismic 

attribute). We propose a new approach to create flow units occurrence probability volumes as 

well as seismic derived porosities and permeabilities that are more robust than the usual 

estimate of petrophysical properties considering sedimentological facies. Considering the 

seismic scale characteristics and using the concept of decametre flow units and quantitative 

seismic interpretation in a Brazilian presalt dataset, we indirectly quantified superimposed 

small-scale effects that obliterate/generate porosity on a larger scale and established a minimum 

number of correlatable FUs with elastic seismic attributes. We produced 3D volumes of 

permeability and porosity that are still capable of obtaining complex reservoir flow 

characteristics and could be directly considered as variables in lateral interpolation of reservoir 

parameters, seismic 4D interpretations and seismic-assisted history matching. 

3.2 Introduction 

Generation of adequate static and dynamic models provides better subsidy for the 

decision-making process, especially in enhanced oil recovery production. For any asset team 
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working in complex geology settings, as Brazilian presalt carbonates, an assertive description 

of reservoir heterogeneity and flow behavior in terms of fluid movement is crucial. In that sense, 

working with flow units in carbonate settings can present an advantage over sedimentary or 

lithological facies, as it provides better estimation of reservoir petrophysical characteristics. In 

the presence of complex geological settings with differential diagenesis, the estimation of 

porosity (ɸ) and permeability (𝑘) performed on a flow unit (FU) basis should be more accurate 

than lithological or sedimentary facies, as discussed by Aggoun et al. (2006), Daraei et al. 

(2017), Hatampour et al. (2018), Ghanbarian et al. (2019). 

Because flow units do not have any correlation with lithological facies, their 

incorporation into 3D static models that are essentially built on sedimentological premises can 

be very disappointing. Depending on the diagenetic history, same lithological facies deposited 

at a given high-energy setting, for example, can present distinct flow behavior. These rocks 

would group at the same sedimentological facies, but at different reservoir rock typing (RRT) 

and flow units because of the distinct porosity generation/obliteration processes. In addition, 

the difference in scales and the lack of correlation between well logs and seismic data makes 

the propagation of the petrophysical properties into 3D geological model problematic and 

purely a geostatistical approach, often resulting in non-realistic flow models. Examples of 

lateral extrapolations of flow units and petrophysical properties considering only well data are 

found in Testerman (1962), Svirsky et al. (2004) and Li et al. (2018). 

Flow units are rarely a considered technique for geophysicists working with quantitative 

seismic interpretation (QSI). In literature, the main publications related to QSI (Avseth et al., 

2005; Dvorkin et al., 2016; Vernik, 2016) does not mention any definition or workflow to 

identify and map the FU from elastic seismic attributes. Prasad (2003) is one of the few 

publications on the usage of flow units constraining seismic velocity-permeability relations. 

The author showed that grouping and sorting rocks into flow units had strong relationship 

between P-wave velocity and absolute permeability within each FU in the analyzed dataset.  

Recent publications correlate flow units with multiple seismic attributes, producing 

constrained tridimensional petrophysical properties of porosity and permeability (Rastergania 

et al., 2016; Iravani et al., 2018; Hatampour et al., 2018). Iravani et al. (2018) considered a 

single FU regression from the well-log data for the entire reservoir, having the acoustic 

impedance volume as constraint for the lateral interpolation of petrophysical properties. 

Rastegania et al. (2016) and Hatampour et al. (2018) used intelligent systems, like probabilistic 
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neural networks and radial basis function networks, to obtain linear relationships between FU 

and seismic attributes. The mentioned methods that correlate FU and seismic attributes, are 

simply an extrapolation of FU classification based on core and well log data into the seismic 

resolution, regardless of the scale difference between data types. For most cases, the geological 

setting of the area is a sand-shale intercalation, where a small number of flow units is enough 

to characterize the reservoir behavior in terms of fluid movement. In more complex geology 

settings, where numerous FUs are calculated, the lack of seismic vertical resolution must be 

considered in the process. 

We propose a methodology for calculating better seismic derived petrophysical 

volumes, characterizing large-scale flow characteristics of the reservoir considering flow units 

as constraints. Using percentiles and a cumulative S-curve in permeability and porosity core 

measurements from the Mero Field, a Brazilian presalt carbonate reservoir, we calculated a 

significant number of flow units that correlates with seismic elastic attributes and respond for 

the large-scale flow characteristics in the reservoir, maintaining part of the local flow 

complexity (Penna and Lupinacci, 2020). Within each FU, we establish petrophysical relations 

that calculates more accurate seismic derived 3D volumes of porosity and permeability and 

compared to volumes calculated using sedimentological k- ɸ relations. 

3.3 Study Area and Data Available 

The present study is developed using a Mero Field database composed of core, well log 

and seismic data. This field is a part of the giant Libra discovery, located in the northeastern 

portion of the Santos Basin, ultra-deep water of the Atlantic Ocean (Fig. 26). Libra Prospect 

comprises a 2013 consortium of Petrobras (operator), Shell, Total, CNOOC and CNPC, under 

the new Brazilian production-sharing contract for presalt areas. Libra Prospect initial estimates 

indicate an oil in place volume of between 8 and 12 billion BOE (Carlotto et al., 2017), with 

high geological complexity in terms of stratigraphic facies (Penna et al., 2019; Penna and 

Lupinacci, 2020). 

Main reservoir rocks of the Mero Field are bivalve rudstones (coquinas) from the 

Itapema Formation (Barremian) and shrubs and spherulites from the Barra Velha Formation 

(Aptian), although high porosity is also found in bioclastic grainstones, packstones, 

wackestones and others carbonate related facies (Jesus et al., 2019; Gomes et al., 2020). Low 

porosity fine-grained carbonates, such as mudstone (classified, for simplification, as 
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microporous sediments) are distinguishable, as well as extrusive and intrusive igneous rocks. 

Because of the lack of vertical resolution and rock high incompressibility characteristics, Mero 

seismic data can only distinguish a simplified lithology classification that comprises carbonates, 

microporous carbonates, and igneous rocks, as discussed by Penna et al., 2019.  

 

Fig. 26 – (a) Mero Field is located on the northeastern portion of the Santos Basin, southeast 

Brazil, close to the Cabo Frio high that separates it from Campos Basin. (b) Base of salt horizon 

(top of the Barra Velha Formation) displays an elongated N-S structure. 17 wells in the study 

area are represented by circles. 
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Mero reservoir, like other Brazilian presalt carbonates, shows many static and dynamic 

indications of fracturing in different stratigraphic levels. However, it is very hard to identify 

relevant and consistent fractured intervals in well logs and borehole images, especially when 

the fracture opening is small (this is common due to the high compaction of these reservoirs, 

and core data tend to highly overestimate fracture opening due to the uncompressing effect at 

sea level). At decametric scale, however, dissolution and neomorphism, replacement of 

minerals, silicification and dolomitization are the main effects that controls porosity generation 

and/or obliteration and fluid movements in the reservoir (Herlinger et al., 2017 and Gomes et 

al., 2020). 

Approximately 500m of cores were taken in different stratigraphic intervals. The dataset 

comprises about 1700 laboratory core and plug measurements of porosity and permeability 

from 17 wells, containing both the Barra Velha and Itapema formations. The seismic data is a 

legacy seismic acquisition that cover an area of 2,484 km², 8 km streamer cable length and 6.25 

x 25m grid. This seismic data was reprocessed in 2016 with an initial tilted transversely 

isotropic (TTI) velocity model over an area of 2,900 km² and a vertical transversely isotropic 

full waveform inversion (VTI-FWI) from 3 Hz to 45 Hz. Then a multi-layer tomography using 

both Kirchhoff and Reverse Time Migration (RTM) picks was performed, followed by a TTI-

FWI from 7 Hz to 8 Hz applied at the entire geologic sequence (pos-salt, salt and presalt). High 

and low-salt velocities layers, like anhydrite, taquidrite, carnalite and silvinite, as well as 

igneous rocks, within the salt stratification, were incorporated for the velocity model. Seifert et 

al. (2017) provides more details and discussions about this procedure. 

We used a model-based constrained sparse-spike prestack seismic inversion (Pendrel, 

2001), calculated from six partial angle stacks of the reprocessed RTM data with the well log 

information of 17 wells drilled in the area. The low-frequency model was built through a lateral 

interpolation of the acoustic impedance (PI), shear impedance (SI) and density logs. The 

stratigraphic control is constrained by four interpreted seismic horizons (top of the Barra Velha 

Fm., top and base of the Itapema Fm. and top of basement. In this inversion method, a minimum 

number of interfaces continuously simulates the seismic trace in a recursive and iterative 

scheme. The derived errors from the comparison of the synthetic and the real seismic data 

should be minimized. Details of the sparse spike inversion method and others available in the 

industry are found in Veeken and Da Silva (2004). 
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3.4 Seismic Data Scale Analysis 

An important issue to be addressed in the characterization of flow units through elastic 

volumes is the difference in scales between data and the magnitude of the feasible discretization 

using available seismic data. In terms of lateral resolution, the seismic scale is relative to the 

bin size of the seismic acquisition: 6.25 x 25 m. For the seismic vertical resolution, the 

minimum thickness of a given layer that the seismic data can resolve (separation between top 

and base of layer interface with the correct thickness) is related to the frequency content, the 

compressional (P) wave velocity of the medium, and the shape of wavelet (Kallweit and Wood, 

1982). Any layer below the minimum vertical thickness will fall into the phenomenon known 

as tuning, where the amplitudes brighten or diminish due to the constructive and destructive 

interferences between overlapping seismic reflectors associated with thin layers. Usually, the 

minimum thickness is considered as one quarter of the signal wavelength (λ) (Kallweit and 

Wood, 1982). 

The seismic data used in this work has frequency content, in the presalt section, between 

5 to 35 Hz, with a peak frequency of 15 Hz, and the wavelet phase close to zero degrees for the 

existing spectra. Based on the frequency content information, an effective way to assess the 

tuning thickness is through the construction of a wedge model, as shown in Fig. 27. We 

considered for the central wedge layer an average value of acoustic impedance that represents 

a flow unit with good permoporous conditions surrounded by layers with low permoporous. 

Wedge thickness varies from 270 m to zero. Apparent thickness is measured from the bottom 

of the positive peak to the top of the negative peak (dashed line). In Fig. 27, the tuning thickness 

is obtained from the lowest value of seismic amplitude, which for this model is approximately 

60m. When the wedge is thinner than this, the apparent thickness deviates from the real 

thickness. This means that the resolution for the flow units is approximately 60m, if we directly 

use the seismic amplitude as constraint. 
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Fig. 27 – (a) A three-layer wedge model. (b) Synthetic seismogram of the wedge model. (c) 

Apparent (orange line) versus real thickness (black dashed line) graph and the amplitude 

variation (black line) from the top of the negative peak. (d) Acoustic (P) impedance wedge 

model. (e) Smoothed P-impedance wedge model for the frequency content obtained from the 

seismic inversion. (f) Apparent (orange line) versus real thicknesses (black dashed line) from 

P-impedance wedge model. 

An advantage of using elastic volumes over seismic amplitude data is the frequency gain 

due to the low and high frequency content incorporated during the seismic inversion process. 

Hill (2005) provides a discussion on this subject, showing that the use of inversion data can 

provide a reliable thickness estimation of about 1/3 of the tuning thickness. For our seismic 

inversion method, we considered a sparse-spike algorithm who calculates a blocked impedance 

volume. The sparse-spike inversion technique is defined through an Lp norm (with p≤1) applied 

in the parameter model of the objective function, which favors discontinuous functions in the 

first derivative of the model (Aster et al., 2004). A blocked impedance solution is only possible 

through an iterative method that increases the higher frequency content, that is, it increases the 

resolution. For instance, Aster et al. (2004) states that once you apply the L1 norm in the 

parameter model, the problem becomes non-linear and for its solution it is necessary to use, for 
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example, the IRLS (iteratively reweighted least-squares) method. As result in a reflectivity 

inversion, the reflected pulses become more compressed and well localized and the solution 

resembles a sparse series of spikes (Oliveira and Lupinacci, 2013). Wang (2014) shows how 

the amplitude spectra of inverted reflectivity series increases from each iteration using the 

sparse-spike solution. Gradually, at each iteration, the spectrum is flattened through the 

increasing high frequency content on the reflectivity series. 

We evaluate the vertical resolution gain using the same wedge model described in Fig. 

27, but now using the impedance data to estimate the apparent thickness. For this, the wedge 

model in acoustic impedance was smoothed to the same frequency content of the elastic 

parameter volumes (0-60Hz) obtained after the prestack inversion. Apparent thickness is 

measured between the top and bottom transition with constant impedance value (dashed line). 

We note that now the real and apparent thicknesses are equal after 23 m, a considerable gain 

compared to the 62 m from the amplitude seismic data. The minimum thickness from inversion 

is named in this work as the minimum inversion thickness. 

The vertical resolution of Mero data indicates that the flow units discretized by the 

seismic inversion data will have decametre scales. This means that every distinct effect that 

obliterates or generates porosity identified at centimetric or metric scales will be expressed 

differently at lower scales. When rock typing for decametre flow units, we are characterizing 

the combined diagenetic effect from several centimetric higher frequency variations. Rock 

typing for flow units core or well log data produces different results compared to seismic data, 

although both represent different stages of the geological building process of a reservoir (Penna 

and Lupinacci, 2020). 

3.5 Flow Units Classification 

The most documented method for rock typing into flow units in clastic and carbonate 

reservoirs is the RQI/FZI (rock quality index/flow zone indicator) method. Since Amaefule and 

Altunbay (1993) introduced the classification based on the Kozeny equations (Kozeny, 1927; 

Carman, 1937), the method is widely used due to its simplicity and consistent results. The 

analysis is based on the permeability (k) in (mD) and effective porosity (ɸ) ratio, where the 

index RQI in µm is: 
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RQI = 0.0314 . ඨ
k

ɸ
 . (19) 

Then, the FZI is calculated as: 

RFZI =
RQI

ɸ
,. (20) 

where FZI is given in µm and ɸ defines as a normalized porosity on the form ɸ/1 − ɸ. 

Taking log on both sides of Eq. 20 and rearranging, we have: 

log RQI = log FZI + log ɸ. (21) 

Considering Eq. 21, a constant value of FZI produces an inclined straight line in log-log 

plot of RQI versus ɸ (Amaefule and Altunbay, 1993). Samples with similar flow 

characteristics and, consequently, same FZI values, cluster around a corresponding unit-slope, 

determining a flow unit. Samples with different FZI values are plotted on different parallel lines 

and grouped in distinct flow units.  

Clustering core data and FZI values into flow units can be performed in different 

approaches, depending on the complexity of the reservoir and classification objectives. As FZI 

is strongly dependent on permeability and usually exhibits log-normal distribution, a histogram 

discretization of log (FZI) values can be enough in relatively simple geology areas. Other 

clustering methods like iterative multi-linear regressions were detailed by Al-Ajmi and 

Holditch (2000). Penna and Lupinacci (2020) used percentiles and cumulative S-curves to 

produce a significant number of flow units aiming decametre flow characterization. In Penna 

and Lupinacci (2020), different methodologies for creating a minimum amount of flow units in 

the well domain were performed, along with a seismic feasibility study considering the vertical 

scale characteristics of the seismic data. 

FZI is considered a robust method of permeability estimation and reservoir prediction 

in terms of flow heterogeneities, due to petrophysical correlations between permeability and 

flow units (see e.g.: Emami Niri and Lumley 2016 and Iravani et al. 2018). Despite being widely 

used in the industry to characterize flow behavior in reservoirs, the FZI method is purely 

petrophysics. Concepts as depositional environments, sedimentological texture and grain type 

are not considered in the flow unit classification. This is the main problem with the FZI 
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technique and flow units rock typing, because, due to the lack of correlation with the local 

geology, is extremely difficult to propagate the flow units in a sedimentary-based geological 

model. Furthermore, obtaining seismic attributes correlations to use as constraints to 

geostatistical procedures is often incipient due to the scale difference between the core and 

seismic data. 

We calculated the stratigraphic modified Lorenz plot (SMLP) (Gunter et al., 1997) using 

the storage capacity and flow capacity of both Barra Velha and Itapema formations from the 

core laboratory permeability and porosity measurements (Fig. 28). In Gunter et al. (1997) 

proposed that the interpretation of each FU is performed observing the slope of the curve: flat 

segments corresponds to seals or baffle zones, as they may present some level of porosity, but 

have no contribution of permeability. Steep segments correspond to “speed zones” of the 

reservoir, they can have low or high porosity, but provide major contributions to the reservoir 

flow performance in terms of fluid movement. In this study, we did not used the SMLP to 

address any discretization in terms of FU. We did use as a graphic tool to indicate how FUs will 

present at different scales. This is a concept like sequence stratigraphy studies where higher and 

lower orders of cyclicity can be individualized using the Wheeler Diagram (Wheeler, 1958) for 

example, as a graphic tool. 

We can measure different scales in the SMLP plot. Higher and lower orders of slope 

variations are present, expressed by the green (higher order) and black (lower order) lines in 

Fig. 28. We see clearly that variations of the low and high frequency are correlational since the 

slope of the low frequency curve depends on the constructive effect of each high frequency 

curve. Considering the study’s objectives of characterize decametre flow units using the seismic 

data as constraints, as discussed in the Seismic Scale section, we considered, as a starting point 

for our analysis, the number of four FU, which corresponds to the lower order of slope variation 

in Fig. 28 (black lines). We found the same high and low frequency variations in the depth 

versus accumulated normalized FZI plot, as suggested by Da Rocha et al. (2019). 
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Fig. 28 – (a) SMLP from the core permeability and porosity measurements. (b) Depth versus 

accumulated normalized FZI values, also evidencing the same FU orders of variation. We can 

observe higher (green lines) and lower (black lines) orders of flow units. 

We choose the RQI/FZI method for rock typing into flow units for the study area 

because of the large number of core permeability and porosity measurements. Due to the high 

geological heterogeneity of the Mero reservoir, a conventional analysis of RQI/FZI produces a 

large number of FUs, as evidenced by the small-scale variation in Fig. 28. Given the scale 

differences between the core and well log data and the seismic data, we prefer to discretize the 

RQI/FZI rock typing using percentiles values and a cumulative S-curve of core 

permeability/porosity data, and then analyze the slope variation of this plot. The steps to 

construct the RQI/FZI curve are: 

1- Calculate porosity and permeability percentiles of the core dataset; 

2- Calculate RQI and FZI values using Eq. 19, Eq. 20 and the percentiles values; 

3- Order the data with increasing values of log (FZI); 

4- Accumulate and normalize the percentiles of permeability values; 

5- Calculate the slope of the curve for each sample. 
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As we observed in the SMLP, two ranges are observable in the derivative data: one on 

a small scale (higher order), related to metric variations, and other on a large scale (lower order), 

related to decametre variations (Penna and Lupinacci, 2020). The four decametre FU detected 

in the SMLP graph are expressed in the RQI/FZI calculation as the major jumps in the derivative 

data, here named as FU1 to FU4. We can infer that the use of percentiles and cumulative data 

comprises a powerful tool to visualize higher order variations in the data. This is 

understandable, given that a running sum in the frequency domain works as a high-cut 

frequency operator. 

FU1 is considered a barrier or baffle zone and corresponds to the initial flat segment of 

the curve with near zero permeability. FU2 relates to the initial detachment of the curve, with 

reduced but considerable flow capacity in the decametre scale. FU3 relates to the first ramp up 

after the FU2 cut-off value and an increasing steep curve. This is a reservoir rock with greater 

permeability and good flow performance. Finally, FU4 corresponds to the better flow 

characteristics and relates to the final step of the S-curve. We used the log (FZI) values as cut-

offs for the segmentation of each rock typing, shown in Table 5. 

Table 5 — FU and log (FZI) cut-offs from the FZI S-curve. 

 Log (FZI) values 

FU1 below -0.5 

FU2 -0.5 to 0.67 

FU3 0.67 to 1.49 

FU4 above 1.49 

We constructed a k versus ɸ semi-log plot and created regressions per flow units from 

core permeability and porosity (Fig. 29). It is evident that there is a scatter around each FU 

regression line, suggesting that a higher frequency classification is more adequate to this 

dataset. However, using the concept of decametre flow units, we expect to gain lateral 

predictability of the petrophysical properties, even that means losing vertical resolution. This is 

a constant trade-off that we must manage when integrating data with scale differences. For 

comparison, Fig. 29 also exemplify porosity versus permeability regressions using the lithology 

description facies distinguishable at seismic scale. These facies (carbonates, microporous and 
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igneous rocks) are based on the rock texture and have no correlation to the FU classification by 

no means, as discussed in Penna and Lupinacci (2020). Note that, for our dataset, reasonable 

permoporous correlations per lithology are difficult. This relates to the fact that the lithological 

description neglects diagenetic effects that occur differently in later stages of the geology 

history of the reservoir. However, those effects are indirectly estimated using flow units.  

From the effective porosity and permeability of the nuclear magnetic resonance (NMR) 

logs, we calculated the RQI/FZI values using Eq. 19 and Eq. 20 for the wells drilled in the area. 

We consider the Schlumberger-Doll Research permeability estimation (Al-Ajmi and Holditch, 

2001), that uses the log mean of relaxation time T2 of NMR logging (small relaxation time 

corresponds to small pores, while large relaxation time reflects the larger pores). Fig. 30 shows 

the flow units rock typing applied for the wells 1, 3 and 7. In these wells, it is evidenced that 

most carbonates with recrystallized silica were classified as FU1, low porosity-permeability 

values. This is quite notable at the bottom of the Itapema Formation in Well 1, where the silicon 

content raises to about 25% and the FU1 is predominant. Igneous rocks were also characterized 

as FU1. Low-energy carbonates with fine sediments, as mudstones, were classified mostly as 

FU2, as seen in segments where gamma ray values increase. Carbonates with better 

permoporous conditions were classified as FU3 or FU4, depending on the silicon content and 

porosity/permeability values. 
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Fig. 29 – (a) Porosity versus permeability regressions per flow units according to the 

discretization proposed in Table 5. (b) Porosity versus permeability regressions per lithology 

description. 
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Fig. 30 – FZI rock typing applied to wells 1, 3 and 7 using the cut-offs defined in Table 5. FU1 

correspond to the worse decametre flow unit in term of reservoir flow performance, while FU4 

denotes high-permeability facies. The first track is the sedimentary classification and the last 

track is the flow unit classification. 

3.5.1 Seismic 1D Feasibility 

To verify how the discretization of decametre flow units behaves in the elastic space, 

considering the vertical resolution of the Mero seismic dataset, we performed a 1D feasibility 

study using time-filtered versions of well logs for the frequency content of the elastic parameter 

volumes (0-60Hz), that is, with minimum inversion thickness of 23 m. For discrete well logs, 

like the flow units, we considered the upscaled facies as the one that occurs with the greatest 

frequency given a running analysis window. 
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Fig. 31 shows how each flow unit separates in the filtered elastic domain, considering 

the P- and S-impedances values within each decametre FZI. As seen also in well logs in Fig. 

30, FU1 tends to present higher values of impedances, while FU4 corresponds to lower values. 

This is expected, considering that FU1 and FU2 are mostly comprised of low porosity and 

silicon cemented carbonates, while FU3 and FU4 correspond to higher porosity and calcium-

pure carbonates. Due to the reduced number of FU used in the study, we can note some 

superimposed zones between each of the four FUs in the elastic domain. This mean that a single 

pair of P-impedance and S-impedance values can relate different flow units, resulting in some 

level of classification errors when predicting petrophysical parameters within FUs. Similar 

analysis from the elastic characteristics of Mero lithological facies reservoir can be seen in 

Penna et al. (2019). 

 

Fig. 31 – P-impedance and S-impedance crossplots (top) and histograms (bottom) of the 

RQI/FZI flow units distributions in the filtered elastic domain with the probability density 

functions (pdfs) for each FU. Left plots correspond to the Barra Velha Formation and right plots 

correspond to the Itapema Formation. 

We performed a Bayesian classification to provide a quantitative analysis of the 

probability occurrence from each flow unit, given the high-cut filtered version of the well logs 

as inputs. Bayesian’s theorem describes the posterior probability p(m | z) of the parameters 

model m given the observed data z: 
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p(m | z) =  
p(m) .  p(z | m)

p(z)
 , (22) 

where p(m)  and p(z) are the probabilities of observing m and z independently, respectively, 

and p(z | m) is the conditional probability the z given m. 

Given the 3D discretization of FU using seismic derived elastic property volumes, we 

can rewrite Eq. 22 as: 

p(FU | PI, SI) =  
p(FU) .  p(PI,   SI | FZI)

p(PI,   SI)
 , (23) 

where p(FU) is a priori estimation of occurrence probability for each facies. For that, we used 

a relative FU facies count for each well. The term p(PI,   SI | FU) corresponds to the probability 

density function adjusted for each FU in the P-impedance (PI) versus S-impedance (SI) 

crossplot (as seen in the histograms in Fig. 31), and p(PI,   SI) is a normalization factor (joint 

probability of PI and SI). Fig. 32 shows the resulting classification, considering all the time-

filtered inputs. Note that because of the seismic vertical resolution, several thin layers are not 

identified in the Bayesian classification. However, the results are consistent and the main units 

are well ranked on the scale of impedance volumes.  

 

Fig. 32 – Bayesian classification of RQI/FZI flow units in decametric seismic inversion scale 

in Well 9. Note that the lower vertical resolution intrinsic in inverted data results in some 

vertical detectability loss of thin layers. 
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3.5.2 Prestack Seismic Inversion 

We performed the calculation of P-impedance (PI) and S-impedance (SI) volumes 

through a sparse-spike prestack seismic inversion (Pendrel, 2001) using seven partial angle 

stacks derived from the RTM data (Penna et al., 2019). We analyzed the AVO response of the 

reservoirs of the Mero Field to generate the angle stacks, considering four degrees of overlap 

between each stack. The angle ranges are 6-14º, 10-18º, 14-22º, 18-26º, 22-30º and 24-32º. 

Individuals wavelets were calculated from each angle stack using a combination of zero phase 

long-window wavelets and well-constrained short-window wavelets. 

We constructed a low frequency model up to 4 Hz using four seismic interpreted 

horizons: base of salt (top of the Barra Velha Formation), top of the Itapema Formation, base 

of the Itapema Formation (top of the Piçarras Formation), and the Basement top. The PI and SI 

well logs were interpolated using an ordinary kriging technique (Azevedo and Soares, 2017). 

We did not consider any uncertainty analysis of the low-frequency influence on the final PI, SI 

and density volumes, because we assume that the amount of wells drilled in the area is enough 

to obtain an accurate low-frequency model. We discussed some of the quantitative results obtain 

with accuracy using the elastic seismic attributes in Penna et al. (2019). As previously 

discussed, working with elastic inversion volumes provides an advantage over amplitude 

seismic due to the increase of vertical resolution brought by low and high frequency content. 

Low frequencies are artificially incorporated using the well logs, while high frequencies result 

by the seismic amplitude deconvolution process. 

Fig. 33 exemplify one NW-SE section resulting from prestack inversion in Mero 

reservoir. In general, the results show a good correlation between the original (well logs) and 

inversion impedance values, which confirm the robustness of the seismic inversion results. 

Most of the P-impedance errors are concentrated in the high values of the intrusive rocks. This 

is due to these rocks are mostly found near the base of salt, where occurs a lot of tuning effects 

and high impedance contrasts between the salt and carbonate layers. Even with the vertical 

resolution increase with the seismic inversion, it is hard to correctly reproduce the real thickness 

and impedance values in these conditions. The dispersion around the S-impedance estimation 

is commonly higher than the P-impedance for Brazilian presalt data, explained due to the worse 

signal/noise ratio in the far angle stacks, compared to the near angle stacks (Penna et al., 2019). 
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Fig. 33 – NW-SE (a) seismic amplitude, (c) P- and (d) S-impedance sections resulting from the 

sparse-spike prestack inversion. (b) The interpreted horizons are, from top to bottom, base of 

salt, top of the Itapema Formation, base of the Itapema Formation and the Basement. (e) Mero 

Field baseline with the NW-SE section. 

3.5.3 Seismic Quantitative Interpretation for Decametre Flow Units 

We applied Eq. 23 to obtain occurrence probability of decametre flow units in the 3D 

grid using the P-impedance and S-impedance volumes. For this, we calculated distinct 

probability density functions (pdfs) for the Barra Velha and Itapema formations, considering 

the impedance logs, as shown in Fig. 31. The priori probabilities volumes for each FU were 

built using a relative proportion of FU per well that were extrapolated to the grid through 

ordinary kriging, considering the interpreted seismic horizons as stratigraphic control. 

The outputs of the Bayesian inference were five volumes: one discrete, called most 

probable FU and four different occurrence probability volumes for each decametre flow unit. 

The most probable volume consists of the corresponding discrete data with the higher 

occurrence probability for a given sample. Each occurrence probability volume varies from 

zero to one, and the sum of all the probabilities for a given sample is always one. 

Fig. 34 exemplifies an E-W section with the five calculated Bayesian probabilities. The 

thick FU4 response in the upper-middle part of the Itapema Fm. corresponds to a large bivalve 
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rudstone (coquina) bank, deposited during the late stage of the rift phase. This lithofacies is one 

of the best reservoirs of the Mero Field in terms of permoporosity, and a detailed study about 

the textural and taphonomic characteristics of this type of reservoirs is found in Chinelatto et 

al. (2020). Most of the Barra Velha Fm. presents FU3, which also has good conditions. At the 

upper part of the Barra Velha Fm. has continuous layers of FU1 and FU2, especially near the 

western flexural edge. This is related to an increased silica concentration, as seen in the top of 

well 1 and well 3 in Fig. 30. The predominance of FU1 is notable in the eastern part of the 

section, but, in this case, it is due to the presence of intrusive igneous rocks, probably related to 

the fault plane presents in that part. Microporous sediments (mostly clay-enriched carbonate) 

also appear as a continuous FU1 layer near the base of the Itapema Fm.  

 

Fig. 34 – Section E-W showing occurrence probability for four decametre flow units and the 

most probable FU. 
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Toward the generation of seismic derived petrophysical parameters considering the 

decametre flow units concept as constraints, we created empirical PI versus ɸ regressions for 

each FU. The link between porosity and P-impedance is one of the most important rock physics 

relation for seismic quantitative interpretation. Several rock physics models use this link to 

characterize and predict the permoporous reservoir behavior (Avseth et al., 2005, Ferreira and 

Lupinacci, 2018; Peçanha et al. 2019, Lupinacci et al., 2020). Fig. 35 shows the PI versus ɸ 

relations for each FU stablished using the P-impedance and the NMR effective porosity of well 

logs. We also presented a comparison of the FU-porosity versus the lithology-porosity (in this 

case, using regressions for reservoir and non-reservoir carbonates, igneous and microporous 

sediments). It is important to mention that due to the bulk compressibility characteristics of the 

reservoir (relatively high values of bulk and shear modulus), the discretization of carbonates 

using the lithology description is quite incipient. For instance, a separation between rudstones 

and shrubs or even water-saturated carbonates between oil-saturated carbonate are not possible 

through elastic attributes. 

 

Fig. 35 – PI versus porosity regressions for decametre flow units (left) and lithologies (right). 

We can observe that the PI versus ɸ dispersions around each lithological facies are 

higher than the dispersions around each FU (Fig. 35). In general, constraining the seismic 

porosity estimation using flow units provides results that are more accurate, as seen in the well 
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logs, percent errors and crossplots in Fig. 36. The usage of lithological facies to constrain the 

seismic estimation of porosity overestimate low-porosity values and underestimate high-

porosity values. 

 

Fig. 36 – (top) Comparison between porosities obtained from regressions by FU (blue curve) 

and by lithology (red curve) with NMR porosity (black curve) in well 1 and 16. (bottom) NMR 

porosity (x-axis) and porosities using regressions by FU and by lithology (y-axis) considering 

all wells. 
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The relations established in the well logs between FU-porosity and lithology-porosity 

(Fig. 35) were extrapolated in the 3D grid on the decametric scale using, respectively, the most 

likely models of FU and lithologies obtained by the Bayesian classification. For more details 

of 3D modeling for lithologies using the Bayesian classification in the study area see in Penna 

et al. (2019). Fig. 37 shows a comparison in two sections of the porosities obtained from FU 

and from lithology. The results using FU were more accurate and with a higher resolution in 

estimating porosity for thin layers. From our approach, we can identify layers with an 

intermediate range of porosity that were not previously invisible considering the lithological 

restriction. As shown in Fig. 36, the porosity from FU shows higher values, above 0.20, mainly 

at the top of the Itapema Fm., where the bivalve rudstones (coquina) are predominant. The 

observation is also valid for lower porosity values, below 0.05, more noticeable in the upper 

part of the Barra Velha Fm., due to the presence of intrusive igneous rocks and the silica 

recrystallization in carbonates. 

Extending the petrophysical properties, we calculated permeabilities based on the 

decametre flow unit concept (permeability-porosity regressions using equations shown in Fig. 

29), and compared them with the permeabilities estimated from the lithologies (permeability-

porosity regressions per lithology). For this, we considered the NMR effective porosity as 

inputs and the Schlumberger-Doll Research permeability as a benchmark (Fig. 38). The usage 

of decametre flow units as constraints provides a much better permeability estimation in Mero 

reservoir. The crossplots of the permeability measured and estimated in Fig. 38 demonstrate 

that percent errors using FU are generally between zero and 3%, while using the lithology the 

percent error is spread above 10%. 

The resulting permeabilities from the FU and lithology constraints are shown in sections 

and maps in Fig. 39. It is evident that the use of the decametre FU provides a better estimation 

of the permeability volume, in terms of the layer definition and the permoporous conditions. 

The same analyzes performed with porosity apply to the results of permeability, although the 

differences are more evidenced between the permeability volumes per FU and per lithology. 
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Fig. 37 – Comparison between the porosities from FU and from lithology. Sections of FU-

porosity (A and C) and lithology-porosity (B and D). Average porosity maps of the tops of the 

(top) Barra Velha and (bottom) Itapema Formations. 
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Fig. 38 – (a) Comparison between permeabilities obtained from regressions by FU-porosity 

(blue curve) and by lithology-porosity (red curve). (b) SDR permeability (x-axis) and 

permeabilities using regressions by FU-porosity and by lithology-porosity (y-axis). 
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Fig. 39 – Comparison between the permeabilities from FU-permeability and from lithology-

permeability. Sections of FU-permeability (A and C) and lithology-permeability. (B and D). 

Average permeability maps of the tops of the (top) Barra Velha and (bottom) Itapema 

formations. 

To validate our three-dimensional results, we compared the porosity and permeability 

values extracted in well locations from the sections discussed in Fig. 37 and Fig. 39. We called 

these extracted values as pseudologs, and the comparison between estimated and profiled ɸ and 

𝑘 are displayed in Fig. 40. We can see, apart from the scale differences (seismic inversion 

derived results are a smoothed version of the well logs), that the results are quite consistent, 

capturing the main variations of porosity and permeability. This is what we expect for the 

decametric characterization of the reservoir: to evidence variations of a lower order in terms of 

fluid movements. However, some differences between the estimated and profiled values are 

notable, most of them related to seismic noise or signal degradation in those places. For 

example, near the depth 5650 m in Well 11 (Fig. 40), it is possible to notice that the porosity 

and permeability derived from the seismic inversion are overestimated when compared to the 

well logs. In that location, the seismic signal is degraded in the Barra Velha section due to the 

presence of a seismic migration artifact, which is repeat near the top of the Itapema Formation, 
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also generating errors near the depth 5760 m. P- and S-impedance estimates are affected when 

the seismic signal is compromised, and, consequently, porosity and permeability estimates are 

also affected. Small errors and miscalculation are also present, and we relate this to the 

dispersion of the P-impedance versus porosity fit in the decametric FU template, as shown in 

Fig. 35. In almost the whole section, the FZI calculated permeability and porosity is more 

accurate than the lithology calculated ones. 

Analyzing the porosity and permeability calculated on the decametric scale, we note that 

the response of the flow units in terms of pore generation/obliteration processes comprises a 

sum of all factors that occur at smaller metric scale. Although some indication of fracture 

permeability and transmissibility are seen in EWT and dynamic data, at seismic-decametric 

scale, we do not believe that high permeability corridors or layers will be detectable or 

successfully classified using our technique. Fig. 41 shows that the FU1 and FU2, with worse 

permoporous conditions, are related to intrusive igneous rocks as well as both silicification and 

dolomitization processes (silica and dolomite replacing calcite), represented as higher 

concentrations of calcium, magnesium and silicon, while FU3 and FU4 present dominance of 

clean calcite carbonates, with little diagenetic effects. These results are same as those found by 

Vasquez et al. (2019) in their petroacoustics studies in Brazilian presalt carbonates. Although 

the understanding and identification of each individual diagenetic process is important, as it can 

show different porosity and permeability relations at metric scale (Grude et al. 2015), they will 

have the same meaning in terms of flow simulation at decametre scale. Depending on how each 

individual effect overlaps, the results on decametric scale may be a single flow barrier zone in 

the reservoir, for example, or a high permeability layer. Usually, most flow simulators grids 

have decametre cells-size, so they fit for this purpose. 
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Fig. 40 – Pseudologs extracted at three well locations from the 3D volumes of porosity and 

permeability compared with the porosity and permeability well logs. 
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Fig. 41 – Ternary diagram of calcium (Ca), magnesium (Mg) and silicon (Si) by FU in Well 1. 

In the decametric scale, degrees of pore obliteration due to dolomitization and silicification (Si 

and Mg substituting Ca) are mixed. 

3.6 Conclusions 

The use of decametric flow units as a constraint to estimate petrophysical properties at 

seismic inversion scale produces much better results than using the lithology classification. In 

our approach, we noticed that the calculated porosity difference is smaller due to the strong 

impedance-porosity relation independent of the scale. For the permeability estimation, the 

usage of decametric flow units proved to be crucial to achieve good results due to the indirect 

consideration of diagenetic effects. We consider that the accurate mapping and comprehension 

of the flow behavior at decametric scale is the first step to build the dynamic knowledge of the 

reservoir at smaller scales, especially considering all the concerns and difficulties to incorporate 

FU into geologic models built essentially on analogs, sedimentary facies and conceptual 

premises. Our methodology provides ways to generate a minimum amount of FU that calculates 

porosity and permeability with acceptable accuracy and are correlatable with elastic attributes 

on seismic inversion scale. We believe that petrophysical estimations derived from decametre 
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flow units by our approach will have great impact on the static model building, as well as 4D 

seismic interpretation and seismic assisted history matching. The proposed method shows that 

the use of seismic elastic inversion laterally predicting decametric flow units and producing 

reliable petrophysical parameters is possible. However, due to the elastic characteristics of the 

Mero reservoir, the evident loss of vertical resolution, the need to simplify the analysis reducing 

the number of FU, and the presence of high superimposed zones of each FU in the elastic 

domain, we strongly suggest an uncertainty analysis and different decametric flow unit 

occurrence scenarios using the a posteriori probability volumes later during the static model 

building stage. We also suggest considering the interpretation of the second most probable FU 

in the Bayesian calculation as a different occurrence scenario. Areas with similar values of FU 

occurrence probability should have a closer look. 

 

  



93 

 
 

4. Geostatistical Seismic Inversion and 3D Modelling of Metric 
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4.1 Abstract 

Flow units (FU) rock typing is a common technique for characterizing reservoir flow 

behavior, producing reliable porosity and permeability estimation even in complex geological 

settings. However, the lateral extrapolation of FU away from the well into the whole reservoir 

grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of 

study. This paper proposes a workflow to generate numerous possible 3D volumes of flow 

units, porosity and permeability below the seismic resolution limit, respecting the available 

seismic data at larger scales. The methodology is used in Mero, a Brazilian presalt carbonate 

reservoir located in Santos Basin who presents a complex and heterogenic geological setting 

with different sedimentological processes and diagenetic history. First, we generated metric 

flow units using the conventional core analysis and transposed to the well log data. Then, given 

a Markov chain Monte Carlo algorithm, the seismic data and the well log statistics, we 

simulated p-impedance, decametric flow units (DFU), metric flow units (MFU), porosity and 

permeability volumes in the metric scale. The aim is to estimate a minimum amount of MFU 

able to calculate realistic scenarios porosity and permeability scenarios, without losing the 

seismic lateral control. In other words, every porosity and permeability volume simulated 

produces a synthetic seismic that match the real seismic of the area, even in the metric scale. 

The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering 

the lateral control of the seismic during the process and can be directly incorporated in the 

dynamic characterization workflow. 

4.2 Introduction 

Complex geology reservoir systems present many challenges to generate coherent static 

and dynamic models for reservoir simulation. The representation of reservoir heterogeneities 
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and flow patterns comprehend the most important step to predict subsurface fluid movement, 

production and injection, especially in giant oil fields where forecast errors can result in a great 

loss of investment. 

Flow units (FUs) reservoir rock typing can present an advantage over lithological rock 

typing in the 3D model building process using seismic data as a constraint, as FU provides 

better estimations of reservoir petrophysical properties, like porosity (ɸ) and absolute 

permeability (𝑘), even in complex geological settings (Penna and Lupinacci, 2021). Once FUs 

may not have any relation with the lithology, incorporating FUs into reservoir models, which 

are essentially built with geological premises, is quite challenge for any asset team. Lithological 

facies, for instance, can comprehend two distinct FUs, depending on the diagenetic evolution 

of both rocks. Due to pore obliteration or generation processes, lithological facies would present 

different fluid flow and petrophysical patterns, and different consequences when submitted to 

production or injection (Penna and Lupinacci, 2020). 

FU rock typing has been performed from flow zone indicator (FZI) (Nabawy et al., 

2018), electrical parameters (Ghanbarian et al., 2017), FZI-star (Mirzaei-Paiaman et al., 2018; 

Rocha et al., 2019) and mercury injection capillary pressure (Liu et al., 2019), demonstrating 

how FUs are a powerful tool to predict storage and flow capacity of the reservoir, regardless of 

the geological complexity. Penna and Lupinacci (2021) show that the 3D porosity and 

permeability performed based on FU is a valuable and accurate tool to be incorporated into 

workflows in the construction of reservoir models. 

Because of the FU incorporation difficulties and lack of correlation with lithological 

facies, most 3D static models built from FU are merely a geostatistical procedure away from 

the well control, without any lateral constraint of the facies interpolation (Li et al., 2018; Zhang 

et al., 2018). However, recent studies have incorporated seismic data into the FU modelling 

workflow for the FU interpolation. Iravani et al. (2018) considered the acoustic impedance as 

constraint for the lateral interpolation of petrophysical properties in a FU template. 

Yarmohammadi et al. (2014), Rastegania et al. (2016), Hatampour et al. (2018) applied artificial 

intelligence to obtain linear relationships between FU and seismic attributes, creating their 

constraints to the 3D FU facies modelling. Penna and Lupinacci (2021) used a cumulative S-

curve analysis to create a decametric FU rock typing, and, through a Bayesian probabilistic 

model, modeled 3D porosity and permeability, adequate to the seismic acoustic impedance 

resolution. All these seismic-generated FU models can later be successfully incorporated in the 
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static modelling workflow of the reservoir, as hard constraints or secondary variable in co-

kriging techniques. 

The usage of seismic attributes provides lateral control for FU interpolation away from 

the well and is especially relevant in large reservoirs with a reduced number of drilled wells. 

However, the vertical resolution of deterministic seismic inversion products is limited to the 

decametric scale, above 20m for Brazilian presalt reservoirs (more details in Penna and 

Lupinacci, 2021). In seismic-incorporated FUs and fluids movements detection, the scale of 

observation is crucial as, for instance, porous fractured media will be more or less connected 

depending on the grid size (Haridy et al., 2020). Conventional methods of seismic facies 

classification do not extrapolate the vertical resolution further from the input data limit and, 

considering that most of the FU classifications are made in the core scale (millimetric) and then 

transposed to well log scale (centimetric), several upscale and downscale assumptions are 

needed to incorporate the decametric seismic results (Penna and Lupinacci, 2021). 

This paper proposes an approach to estimate seismic derived petrophysical property 

volumes at the metric scale. Using data percentiles and a cumulative S-curve from the core 

porosity and absolute permeability, we calculated a significant number of decametric and metric 

flow units that correlates with seismic acoustic impedance and responds for both large and small 

scales flow characteristics of the reservoir. Within each iteration of decametric and metric flow 

units from the geostatistical seismic inversion, we co-simulated 3D volumes of petrophysical 

properties that respect the well information in the metric scale and are laterally consistent with 

the local geology and the acquired seismic data, regardless of the input resolution limit. 

4.3 Study Area and Geological Settings 

Mero reservoir, part of the Libra block, locates in the northeast portion of the Santos 

Basil, Brazil (Fig. 42). The consortium that operates the field consists of Petrobras, Shell, Total, 

CNOOC and CNPC, under the new Brazilian production-sharing contract ruled by Pré-Sal 

Petróleo S.A. (PPSA). The initial exploratory phase of the block estimates an oil in place 

volume between 8 to 12 billion BOE (Carlotto et al., 2017), with high-complexity geology, 

igneous rocks occurrence (Oliveira et al., 2019; Penna et al., 2019; Penna and Lupinacci, 2020; 

2021) and diagenetic effects (Leite et al., 2020; Sartorato et al., 2020). 

One of the main hydrocarbon fluid characteristics from Mero Field is the high CO2 

content (44% in the gas phase), which imposes several challenges to the reservoir management. 
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The production design comprises a Floating Production Storage and Offloading (FPSO) 

designed to reinject all the gas produced (Moczydlower et al., 2019). The drilled wells by the 

consortium are keepers and will be used as producers or water alternating gas (WAG) injectors. 

 

Fig. 42 – (a) Mero reservoir and Libra block location in southeast Brazil. (b) Top of reservoir 

(Barra Velha Formation) structural map. (c) NW-SE seismic section a stratigraphic 

interpretation (after Penna and Lupinacci, 2021). 

Santos Basin evolution history (also Libra block, consequently) initiates with basalts 

from Camburiú Formation (138 to 130 million years) as the response for the initial Gondwana 

breakup. Piçarras Formation (Barremian age) corresponds to the initial rift stage of the 

continental breakup, with sandstones, mudstones and shales deposited in lacustrine 
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environments. From the Neobarremian until Eoaptian ages, rudstones from Itapema Formation 

were deposited in high energy platform settings. In lower energy settings, usually in relative 

structural low, organic rich shales occur. These rocks are considered the main hydrocarbon 

source in the Santos Basin. The Barra Velha Formation deposits are from transitional 

environments between continental to shallow marine settings, the lower part to the intra-

Alagoas unconformity still belongs to the rift phase and the upper part belongs to the sag phase. 

The base of the sequence are predominantly grainstones and packstones (reword facies), while 

in the top shrubs, spherulites and laminites (in-situ facies) occur more frequently (Gomes et al., 

2020). In the late Aptian, already in marine environment, a thick salt sequence from Ariri 

Formation were deposited. This layer is the main Santos basin hydrocarbon seal and is mainly 

composed by halite and anhydrite (Moreira et al., 2007). Fig. 43 shows the Santos Basin pre-

salt lithostratigraphy, tectonic evolution and unconformities adopted in this work. 

 

Fig. 43 – Santos Basin pre-salt lithostratigraphy, tectonic evolution and unconformities (After 

Buckley et al., 2015; Wright and Barnett, 2015; Neves et al., 2019). 

Mero Field main reservoir rocks are bivalve rudstones (coquinas) from the Itapema 

Formation and shrubs and spherulites from the Barra Velha Formation, although high porosity 

is also found in rework facies as bioclastic floatstone, grainstones and, packstones (Jesus et al., 

2019; Penna and Lupinacci, 2020; Penna and Lupinacci, 2021). Several diagenetic effects of 

dissolution and neomorphism, replacement of minerals, silicification and dolomitization are 

identified, and corresponds to the main effects that controls porosity generation and/or 

obliteration and, consequently, fluid movements in the reservoir (Herlinger et al., 2017, Gomes 

et al., 2020, Leite et al., 2020 and Sartorato et al., 2020). 
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A unique feature of Libra block and Mero reservoir is the abundant igneous rocks 

presence (Oliveira et al., 2019; Penna et al., 2019). Extrusive igneous rocks are 

Barremian/Aptian age and are mainly composed by tholeiitic basalts, more commonly found 

below Itapema Formation (Penna et al., 2019). Intrusive igneous rocks are from 

Santonian/Campanian ages, mainly alkaline, and can occur anywhere in the stratigraphy cutting 

surrounding rocks or concordant to the sedimentary layering (e.g., top of the Barra Velha 

Formation). The correct mapping and prediction of these rocks are very relevant for the 

characterization and management of the reservoir, once they penalize the total oil in place 

volume, can act as flow barriers (or even high permeability layers, if fracturing is high enough) 

and contributes to the regional aquifer and pressure maintenance. 

4.4 Data Available 

The consortium that operates the field performed an extensive core program with 

approximately 500m of linear samples taken in both Barra Velha and Itapema formations. 1700 

conventional core and plug analysis measurements of porosity and permeability are available 

in different stratigraphic levels from seventeen drilled wells. We organized and analyzed this 

datasheet for the purpose of flow unit classification. Twelve well logs are also available and 

comprehends sets of both logging while drilling (LWD) and wireline: gamma ray, resistivity, 

compressional and shear slowness, density, nuclear magnetic resonance porosities (total, 

effective and free fluid) and permeability and elements (e.g., calcium, potassium and 

magnesium) 

The seismic data is a legacy seismic acquisition that cover the whole Libra block with 

an 8 km streamer cable length, 6.25 x 25m grid and 5m of vertical sampling. This data was pre-

stack reprocessed in 2016 with an initial tilted transversely isotropic (TTI) velocity model and 

a vertical transversely isotropic full waveform inversion (VTI-FWI) from 3 Hz to 45 Hz. Then, 

a multi-layer tomography using both Kirchhoff and Reverse Time Migration (RTM) picks was 

performed, followed by a TTI-FWI from 7 Hz to 8 Hz applied at the entire geologic sequence 

(pos-salt, salt and presalt) as detailed by Araujo et al. (2015). For the FWI velocity model, high 

and low-salt velocity layers, like anhydrite, taquidrite, carnallite and sylvinite, as well as 

igneous rocks, within the salt stratification, were incorporated. This procedure is presented and 

discussed and by Seifert et al. (2017).  
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In the presalt interval, the seismic data has approximately 15 Hz of peak frequency, with 

bandwidth of 5 to 35 Hz. Based on the local geology petrophysical characteristics and the 

seismic spectral distribution, Penna and Lupinacci (2021) created a wedge model to estimate 

the vertical resolution of the full-stack seismic considering the true thickness resolving capacity. 

According to their analyses, the vertical resolution is 62m when considering the seismic 

amplitude and 23m from inverted acoustic impedance volume, thus any layer below these limits 

will be falsely estimated in terms of thickness. This means that facies or flow unit mapped from 

seismic amplitude or inverted acoustic impedance volumes will present decametric proportions. 

4.5 Metric Flow Units Facies Discretization and Rock Typing Statistics 

Considering the amount of conventional core analysis available in Mero reservoir, we 

used two methods based on permeability (𝑘) versus porosity (ɸ) for flow unit discretization. 

First, we considered Gunter et al. (1997) stratigraphic modified Lorenz plot (SMLP) as a visual 

aid to estimate a minimum number of flow units and identify local reservoir flow trends in both 

decametric and metric scales. Then, we calculated rock quality index/flow zone indicator 

(RQI/FZI) for the discretization (Amaefule and Altunbay, 1993). Those are both extensively 

documented methods successfully applied in both clastic and carbonate geological settings. 

The SMLP was first introduced by Gunter et al. (1997) by plotting the percent storage 

capacity (product of porosity and thickness) versus percent flow capacity (product of 

permeability and thickness), providing a visual guide to estimate how many flow units (FUs) 

are necessary to honor the geologic framework in terms of fluid movement in the subsurface. 

Fig. 44 shows the SMLP plot of both Barra Velha and Itapema formations. The minimum 

number of FU estimation is performed observing the slope and behavior of the curve: as the 

mean storage and flow capacity increases, we have better flow units in terms of its permoporous 

characteristics. In that sense, flat segments can correspond to seals, baffle zones or low-

production zones, as they may present some level of porosity, but have limited contribution of 

permeability. Steep segments correspond to “speed zones” of the reservoir, they can have low 

or high porosity, but provide major contributions to the reservoir flow performance. 
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Fig. 44 – Barra Velha and Itapema formations SMLP. Black lines: decametric scale flow units. 

Green lines: metric scale flow units. 

We estimated the minimum number of flow units in the SMLP using a sequence 

stratigraphy reasoning for high order and low order variations, like a Wheeler Diagram 

interpretation (Wheeler, 1958). The plot in Fig. 44 clearly demonstrates how the flow unit 

characterization is scale dependent. Variations of the low- and high- frequency cycles are 

correlational since the slope of the low frequency curve depends on the constructive effect of 

each high frequency curve. Penna and Lupinacci (2021) introduced a workflow for the detection 

of decametric flow units using inverted acoustic and shear impedance volumes, considering the 

black lines as decametric trend (Fig. 44). However, our purpose here is to characterize higher 

orders of fluid movements in the reservoir as metric flow units using the acoustic impedance as 

constraints obtained from a geostatistical inversion. For this, eight FU are considered as metric 

flow trends (green lines) in Fig. 44. 

The flow unit discretization is performed in the core analysis using the rock quality 

index/flow zone indicator (RQI/FZI), and then transposed to the well log data. This method is 

based on permeability (k) in (mD) and effective porosity (ɸ) ratio and derived from a Kozeny-

Carmen equations generalization (Kozeny, 1927). It was introduced by Amaefule et al. (1993) 
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and is widely used due to its simplicity and assertive results. Let the index RQI (reservoir 

quality index, in µm) be: 

RQI = 0.0314 . ඨ
k

ɸ
 , (24) 

where k is the absolute permeability (in mD) and ɸ the effective porosity. Then, the FZI is 

given by: 

FZI =
RQI

ɸ
, (25) 

where ɸ is an effective porosity normalization on the form ɸ = ɸ/1 − ɸ. Since its 

derivation from Kozeny-Carmen equations, FZI value is approximates an average pore throat 

radius for a given porous media, relating effective porosity, and permeability. Different 

sedimentation environments, late diagenetic processes and reservoir geometry are also 

controlling parameters of FZI (Tiab and Donaldson, 2004).  

Taking log on both sides of equation 25 and rearranging it, we verify the linearity 

between FZI, RQI and ɸ: 

log RQI = log FZI + log ɸ, (26) 

In log-log plot of RQI versus ɸ, a constant value of FZI produces an inclined straight 

line. The inference is that samples with similar flow behavior falls around a corresponding slope 

line, determining a single flow unit (FU). Samples with distinct flow characteristics are plotted 

in different parallel lines and arrange distinct flow units. 

Different methodologies for clustering samples around FZI values and creating FU are 

available in the literature and applied in different geological scenarios. In some cases, a simple 

log(FZI) histogram discretization is enough to discretize the flow units (considering that the 

samples show strong FZI versus permeability correlation and a log-normal FZI distribution). 

More complex methods, such as iterative multi-linear regressions (Ajmi and Holditch, 2000) 

and normal probability plots (cumulative distribution function, Mahjour et al., 2016) are also 

widely used, especially in more complex geological settings. Penna and Lupinacci (2020; 2021) 

showed that the usage of percentiles and a cumulative S-curve produced a significant minimum 
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amount of flow units with statistical relevance without compromising the estimation of 

petrophysical properties. This is particularly relevant to the scope of this study, considering the 

amount of  k and ɸ measurements, the high complexity degree of the Mero reservoir and the 

aim to correlate the FU to seismic data with respect to its vertical resolution limit. 

The steps to construct the RQI/FZI cumulative S-curve, as presented by Penna and 

Lupinacci (2021), are: 

1. Take all the core porosity and permeability measurements and calculate statistical 

relevant percentiles (the number can vary, depending on the data characteristics. Each 

percentile is a representative sample from a given interval). 

2. Calculate RQI and FZI values using Eq. 24, Eq. 25 and the percentiles values. 

3. Order the data with increasing values of log (FZI). 

4. Accumulate and normalize the percentiles of permeability values. 

5. Calculate the slope of the curve for each sample (Fig. 45). 

As described in the SMLP, at least two scales of variations are observable in the 

derivative data Fig. 44): one on a small scale (higher order), related to metric variations, and 

other on a large scale (lower order), related to decametre variations. Penna and Lupinacci (2021) 

choose to interpretate the major jumps in the slope curve as the decametric flow characteristics 

changes in the reservoir, although this can be extended to many scales. The lower scale of 

observation responds to low frequency variations in the SMLP and FZI S-curve plots, and 

higher order of variations responds to high frequency variations. This was fit for purpose, as 

the scope of their work were to characterize flow units in the decametric scale and then correlate 

with elastic attributes. Given that the aim of the present study is to get a step further, discretizing 

metric flow units with the seismic data, we interpret the major jumps in the slope plot, first 

order variation, that corresponds to the decametric FU, same as Penna and Lupinacci (2021), 

and the second order variation, as the metric FU. 

Using both effective porosity and permeability from the nuclear magnetic resonance 

(NMR) well logs, the RQI/FZI values are calculated for each well through Eqs. 24 and 25. The 

discretization of FU in the metric (MFU) and decametric (DFU) scales in the S-curve plot are 

shown in Fig. 45. Eight metric flow units are interpreted considering the changes in the FZI S-

curve slope. Note that the number of metric flow units correlates to the SMLP interpretation as 

a higher order variation from the decametric scale. The cut-offs in log(FZI) used for discretizing 

the flow metric units (MFU) are shown in Table 6. 
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Fig. 45 – log(FZI) S-curve for MFU discretization. Grey line corresponds to decametric FU 

classification (after Penna and Lupinacci, 2021) and red line corresponds to metric FU 

classification. 
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Table 6 – Metric FU (MFU) cut-offs from the FZI S-curve. 

 Log (FZI) values 

MFU1 below -2.2 

MFU2 -2.2 to -0.5 

MFU3 -0.5 to -0.2 

MFU4 -0.2 to 0.4 

MFU5 0.4 to 0.8 

MFU6 0.8 to 1.9 

MFU7 1.9 to 3.7 

MFU8 Above 3.7 

The initial flat segment parallel to the X axis of the curve shown in Fig. 45 describes 

FUs that have no contributions to the flow behavior of the reservoir in the metric scale. 

Therefore, MFU1 and MFU2 are considered seals or baffle zones that retain fluid flow, acting 

as vertical and horizontal barriers. In general, rocks with reduced matrix porosity like igneous 

rocks, cemented and clay-rich carbonates are into these units. 

The initial detachment of the curve from the X axis denotes MFU3 and subsequently 

MFU4 (Fig. 45). These FUs have some flow capacity but are very poor in terms of overall 

reservoir flow behavior. This is the typical behavior of carbonates with some late diagenetic 

effects, like quartz and dolomite cementation obliterating the original matrix porosity of the 

rock. Although not directly considered for production, they are important for maintaining 

reservoir pressurization over production time. 

The first ramp up of the curve characterizes MFU5 and MFU6 (Fig. 45), with better 

permoporous reservoir characteristics then the previous units. Although some level of 

diagenetic effect can occur, they will have considerable contributions to reservoir flow during 

production. Some bioclastic grainstones, packstones and wackestones belongs to MFU5 and 

MFU6, for example. The end of the curve corresponds to the better FUs in terms of 
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permoporous characteristics of the reservoir, MFU7 and MFU8. They have considerable 

porosity and remarkable flow performance during production. In general, MFU7 and MFU8 

correspond to clean calcite carbonates like bivalve rudstones (coquinas) from the Itapema 

Formation and shrubs (stromatolites) from the Barra Velha Formation, with little or none late 

diagenetic effects (Penna and Lupinacci, 2021). 

Fig. 46 demonstrates how the new classification differs from the decametric flow unit 

(DFU), presented by Penna and Lupinacci (2021), and considering the seismic vertical 

resolution limitation. The relationship between DFU1 and MFU1 and MFU2, for instance, are 

quite notable, as the latter are a one-step upscaling of the first one. The mean, median and 

standard deviation of acoustic impedance (PI), effective porosity (ɸ) and Schlumberger-Doll 

Research (Al-Ajmi and Holditch, 2000) permeability (k) for each metric flow units are 

displayed in   
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Table 7.  The calculations were performed using the well logs. Note that the overall 

values of PI tend to decrease from MFU1 to MFU8, while porosity and permeability increase. 

This is expected, as MFU1 corresponds to low-FZI values (small pore throat radius) and MFU8 

are high-FZI values (large pore throat radius). In general, the distribution of PI, porosity and 

permeability for MFU are close to symmetric, with little mean versus median differences. 

4.6 Geostatistical Seismic Inversion for Metric Flow Units 

4.6.1 Stochastic Seismic Inversion Method 

Geostatistics is a modelling tool that plays an important role in constructing earth 

models. In geoscience, initially developed with the constant grow of the mining industry, 

geostatistical concepts and algorithms have been widely adopted in the oil exploration and 

production for many purposes (Pereira et al., 2017; Feng et al., 2018; Kneller et al., 2019). 

These techniques are traditionally used to interpolate the target property, most commonly 

facies, porosity and permeability, between well data within a stratigraphic framework. The most 

common method is the Sequential Gaussian Simulation (SGS, Deutsch and Journel, 1992). 

Since the introduction by Haas and Dubrule (1994), seismic stochastic inversion is an 

active topic of interest, as the technique introduces seismic data as a constraint to generate 

possible earth models (Doyen, 2007). However, the direct use of seismic as secondary data for 

reservoir modelling is usually frustrating because of vertical scale differences between seismic 

(usually decametric resolution) and well logs (centimetric). Finding a relationship between, for 

instance, seismic amplitude and/or impedance volumes and well log porosity is constantly 

difficult, making the incorporation of seismic data directly into the SGS workflow a challenge 

for reservoir characterization (Azevedo and Soares, 2018). 
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Fig. 46 – Application of log(FZI) cut-off discretization in Well 6 using the effective porosity 

from the magnetic resonance data. Lithologies on the left correspond to a simplified 

classification for seismic facies analysis purposes (after Penna et al., 2019).  
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Table 7 – Mean, median and standard deviation of Acoustic impedance (PI), porosity (ɸ) and 

permeability (𝑘) from MFU1 to MFU8 considering both Barra Velha and Itapema formations.  

  PI (g/cm³.m/s) ɸ (frac.) 𝑘 (mD) 
M

F
U

1 

mean 16,521 0.042 0.016 

median 17,478 0.044 0.005 

std. dev. 2,785 0.019 0.022 

M
F

U
2 

  

mean 14,829 0.087 0.265 

median 15,276 0.082 0.234 

std. dev. 1,880 0.005 0.126 

M
F

U
3 

mean 14,482 0.102 1.251 

median 14,869 0.102 1.057 

std. dev. 18,645 0.007 0.634 

M
F

U
4 

mean 13,874 0.119 5.933 

median 14,112 0.118 5.658 

std. dev. 1,850 0.004 2.023 

M
F

U
5 

mean 13,047 0.144 28.23 

median 13,814 0.144 25.85 

std. dev. 1,646 0.009 12.69 

M
F

U
6 

mean 11,928 0.167 80.29 

median 11,022 0.168 78.01 

std. dev. 1,599 0.004 16.77 

M
F

U
7 

mean 11,522 0.188 232,75 

median 10,874 0.188 199,08 

std. dev. 1,454 0.007 103,68 

M
F

U
8 

mean 10,633 0,236 1760,67 

median 9,830 0,220 1146,7 

std. dev. 1,674 0,038 1425,33 
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The most documented and used methods for stochastic seismic inversion are SGS 

(Escobar et al., 2006), Direct Sequential Simulation (DSS, Soares, 2001), Global Stochastic 

Inversion (GSI, Soares et al., 2007) and Monte Carlo Markov Chain (MCMC Statmod® 

MCTM, Sams et al., 2011). Although these methods differ in how to sample prior/posterior 

pdfs, they essentially produce multiple realizations of petrophysical properties, considering the 

stratigraphic grid and a given vertical sampling (that can be smaller than the available seismic 

sampling). Every iteration produces a geologic model that fits the seismic and well log data, i. 

e., each realization is plausible samples of the reservoir's posterior distribution and a variance 

measure of the input parameters, considering the seismic data as constrains. 

In this study, we perform a Metropolis-Hastings (MH) algorithm within the MCMC 

method (MCMC Statmod® MCTM, Sams et al., 2011) to simulate the acoustic impedance. 

There are three main steps in the stochastic inversion workflow, which are detailed further: 1) 

Statistical modelling, where are estimated the probability density functions (pdfs), variograms 

and trends for each decametric and metric facies; 2) Bayesian inference, combining the prior 

model, seismic and well data for compute the posterior distribution; and 3) Sampling, where 

we used the MH-MCMC algorithm for sampling the posterior pdf. Briefly, the algorithm 

constructs a pdf that represents P (reservoir | geostatistics, seismic) and sample it for the target 

property volumes using the MCMC method, i. e., the probability of the produced reservoir 

model given the input geostatistics and seismic data. 

The workflow for the stochastic inversion is represented in Fig. 47. The evidence and 

assumptions are expressed as a series of pdfs defined over the property volumes. We calculated 

variograms for continuous and discrete properties and property distributions (multivariate joint 

pdfs). Then the seismic data is modeled for acoustic impedance using the convolutional model 

and a normal pdf for the seismic noise is calculated to account for uncorrelated differences 

between real and synthetic seismic (Saussus and Sams, 2012; Kneller et al., 2019). The steps 

(Fig. 47) are described as: 

1. In the stratigraphic grid, created from seismic horizons, start with an arbitrary reservoir 

model (res0) and select a random location in the volume (the current state of the chain). 

The lateral sampling is consistent with the seismic data grid and the vertical sampling 

is 1m. 

2. Randomly generate a modified realization (res1). A synthetic seismic (synth1) is 

calculated through convolution between the estimated wavelet and res1 acoustic 
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properties. Considering the Bayesian inference scheme, compute the likelihood function 

of res1 given the real seismic data: P(seis | synth1). 

3. Evaluate the prior distribution of the modified realization (P(res1 | geostats), which 

reflects the lateral and vertical continuity computed from the variograms and the value 

of the property at neighboring cells. 

4. Multiply the prior distribution P(res1 | geostats) with the likelihood function P(seis | 

synth1) to compute the posterior probability value given the input information (e.g., 

statistics, well data, seismic horizons and stratigraphy). This is the Bayesian inference 

part of the algorithm. 

5. Compare the posterior probability value with the current reservoir model res0. If the 

proposal res1 has a higher posterior probability value than res0, there is, P(res1 | 

geostats, seis) > P(res0 | geostats, seis), then res1 is accepted and the chain moves to a 

different random location considering res1 as the new current state. Otherwise, if the 

value is smaller, res1 can be randomically rejected (and res0 is the current stat for the 

next step) or accepted as a ratio between P(res1 | geostats, seis) and P(res0 | geostats, 

seis). Note that this is the Metropolis-Hastings part of the algorithm, avoiding the 

calculation to be stuck in locals maxima/minima as lower probabilities are sometimes 

accepted. 

6. The process continues updating for the entire seismic volume until P(resn | geostats, 

seis) is no longer changing. Due to the large number of calculations needed to sweep 

the entire volume, the MCMC algorithm only calculate the conditional posterior pdf on 

a small portion of the volume at a time. Combination them all gives the global posterior 

pdf. 

Note that the MCMC algorithm does not change the whole Res0 trace considering a 

single iteration. Instead, a small portion of the grid is modified a step at a time, until the entire 

grid is swept. All the pdfs are local, so they are re-calculated every time the calculation moves 

to another part of the volume. 

For our purpose, the stochastic seismic inversion fits very well, once we are taking 

advantage over the seismic constraint in decametric scale but also explicitly simulating flow 

units in the metric scale, below the seismic data resolution. The objective is to generate many 

plausible flow units models (and consequently porosity and permeability models) and coherent 
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with the decametric and metric seismic scales, given the geostatistics associated with every 

metric flow unit (MFU). 

4.6.2 Inputs and Parametrization 

We created the grid using three mains seismic horizons: top of the Barra Velha Fm., top 

of the Itapema Fm. and top of the Piçarras Fm. (base of the reservoir). The lateral spacing is 

relative to the seismic grid (25m x 25m), and vertical sampling is set to 1m. For the seismic 

constraint, a full-stack RTM seismic processing from a VTI-FWI migration was used (see 

Araujo and Gouveia (2015) for more details about Mero seismic data). 

The stochastic inversion is set to invert for acoustic impedance, decametric flow units 

(defined by Penna and Lupinacci (2021)), and metric flow units (defined from the FZI cut-offs 

described in Table 6). We maintain the FZI S-curve relation between decametric and metric 

flow units, that is, MFU1 and MFU2 will only occur if DFU1 is present, for instance. This is 

compatible to the flow multi-scale of observation reasoning used for discretization. 

As input, we considered experimental vertical variograms calculated from well logs for 

acoustic impedance, decametric and metric flow units. Fig. 48 shows an example of the 

experimental and modelled variograms. They are a mixture of 60% gaussian and 40% 

exponential with vertical range of 20m for PI, of 5 to 10m for DFU and of 3 to 6m for MFU. 

No differences were observed between vertical variograms of the Barra Velha and Itapema 

formations, so we considered the same variogram parametrization for both layers. 

We calculated the experimental lateral variograms through different maps. For the 

acoustic impedance, we extracted mean values for both Barra Velha and Itapema Formations 

considering the PI volume derived from the elastic inversion (Penna et al., 2019). For the 

decametric flow units lateral variograms, we used the mode considering each of the most likely 

facies volumes derived from the Bayesian classification (Penna and Lupinacci, 2021). The same 

DFU lateral variogram was considered for the MFU. Also, no considerable differences were 

found between lateral variograms of the Barra Velha and Itapema formations, therefore we used 

the same variograms for both formations. In general, they are a mixture between 90% Gaussian 

and 10% exponential curves with a range around 2,500 m for the PI and 1,000 m for DFU and 

MFU (Fig. 49). 
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Fig. 47 – MCMC Statmod® MCTM algorithm workflow. 
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Fig. 48 – Experimental and modelled vertical variograms for (a) Acoustic impedance, (b) 

decametric flow units and (c) metric flow units. Experimental variograms were calculated from 

well logs. 

Acoustic impedance pdfs for DFU are the same as shown in Penna and Lupinacci 

(2021). For MFU, we estimated normal PI pdfs separately for the Barra Velha and Itapema 

formations, as shown in Fig. 50. Due to the high resolution of the discretization, it is expected 

that the PI superimposition between MFU units would be larger than the DFU pattern. One of 

the aims is solve this ambiguity through MCMC simulations and several iterations, producing 

a numerous amount of possible MFU occurrence volumes constrained to the seismic data in 

decametric scale. The general behavior observed concentrates more MFU1 in higher PI values 

and MFU8 in lower PI values, like the DFU behavior. 
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Fig. 49 – Experimental and modelled lateral variograms for (a) acoustic impedance, (b) 

decametric and metric flow units. We calculated the txperimental variograms considering 

elastic inversion volumes (PI) and Bayesian facies classification (DFU and MFU). 

We chose not to use a constant value for the a priori probability in the Bayesian 

classification, as the facies are highly heterogenous in carbonate environments. Instead, we 

constructed a volume regarding the laterally variable a priori probability for each DFU 

extrapolating, through ordinary kriging, the facies proportion in the wells considering horizons 

and framework. Since there are no wells drilled in structural lows (therefore sampling low-

energy settings) in the study area, we applied a multiplier to raise the prior occurrence 

probabilities of worse permoporous DFU and MFU away from the Mero main structural high. 

This behavior is corroborated by numerous presalt analogs that drilled this specific setting 

(Teixeira et al., 2017; Lima and De Ros, 2018; Neves et al., 2019; Gomes et al., 2020). For each 

DFU occurrence, there is a prior probability of MFU that corresponds to a mean ratio between 

its correlated facies obtain from the well data. For example, if DFU1 occur in a given location, 

a prior probability for MFU1 is 60%, and 40% for MFU2. Fig. 51 exemplifies how a prior 



115 

 
 

probability varies laterally for DFU4, for exemplification, and a prior probability ratio from 

MFU1 to MFU8 considering the occurrence of each associated DFU. 

 

Fig. 50 – P-Impedance pdfs for MFU in both Barra Velha (above) and Itapema (below) 

formations. 

4.6.3 Stochastic Inversion Results and Quality Control (QC) 

We performed 100 iterations for the MCMC P-impedance inversion, that is, 100 

possible solutions were calculated for the acoustic impedance, DFU and MFU given the seismic 

data as constraint. The mean wavelet, necessary for the synthetic seismic convolution, is the 

same used for the seismic inversion by Penna et al. (2019). Initially, we used all the wells with 

available well-log data as hard constrains for the inversion. Then, we removed three wells to 

blind-tests and performed the inversion. The presented results below are the blind-test versions 

of the MCMC inversion. 
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Fig. 51 – (a) A prior probability NW-SE section through DFU4 3D volume and (b) the relation 

between prior probabilities of DFU and MFU. 

The mean PI and DFU and MFU most probable occurrence volumes from the 100 

iterations, and the results from two random iterations are presented in Fig. 52. Clearly, one 

notices the relation and distribution of low-PI values as DFU3 and DFU4 and MFU5 to MFU8, 

while high-PI values tend to concentrate more DFU1 and DFU2 and, consequently, MFU1 to 

MFU4. Also, we noted how the occurrence of each MFU is conditioned to the occurrence of its 

correlated DFU. These sections are a good example of the advantage of using the seismic 

constraints over decametric scale and stochastic simulation over metric scale, below seismic 

resolution. To illustrate the special distribution, PI mean and DFU and MFU mode maps from 

the Itapema Formation are displayed in Fig. 53. 

Overall, the prior and posterior pdfs results for PI inversion are consistent, within few 

errors along Barra Velha and Itapema formations, except for MFU1 and MFU2 (Fig. 54). The 

reason for the discrepancy for these two flow units is the addition of an increasing a prior 

probability of DFU1 at lower structural regions (areas without drilled wells), mainly with 

predominance of mud sediments that corresponds to low PI values. Because of those areas, this 

pushes the posterior MFU1 and MFU2 PI values to the left of the plot. For the other MFUs, 
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metrics such as mean, standard deviation, P10 and P90 are in match between prior and posterior 

pdfs. 

 

Fig. 52  – (above) Mean PI and most probable DFU and MFU NW-SE section from 100 MCMC 

iterations. (middle) Iteration 21 PI, DFU and MFU results. (below) Iteration 86 PI, DFU and 

MFU results. 
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Fig. 53 – (left) Mean PI map from the upper Itapema Formation. (middle) DFU and (right) 

MFU mode maps from the same stratigraphic layer. 

 

Fig. 54 – A prior and posterior pdfs for the 100 MCMC iterations. MFU1 posterior pdfs deviates 

from a prior pdfs because of the increasing MFU1 occurrence in structural depressions, areas 

without any drilled wells sampling mud sediments, usually worse permoporous units with low 

PI values. 
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The overall a prior and posterior proportions of DFU and MFU for both Barra Velha 

and Itapema formations is presented in Fig. 55. MCMC inversion produced occurrence volumes 

that corroborate the well statistics. DFU, except for the wells used as blind-tests, are a perfect 

match between a prior and posterior, because they were used as hard constraints at the well 

location. This is not the case for MFU, whose small deviations are observed between a prior 

and posterior proportions.  

4.6.4 Porosity and Permeability Cosimulation 

We cosimulated porosity and permeability for each PI iteration to estimate a numerous 

quantity of possible ɸ and permeability 𝑘 volumes, given the MFU distributions calculated by 

the MCMC inversions. The procedure for the cosimulation is similar to the workflow described 

in 4.6.2, with the difference that the posterior probability is now coupled with the simulated PI 

value, there is, we are sampling for P(porosity | geostat, simPI) and P(permeability | geostat, 

simPI). It is important to emphasize that the porosity and permeability cosimulation is restricted 

with the MFU, below the seismic resolution. However, MFU is directly related to a specific 

DFU that is constrained by seismic data. So, at the end, the porosity and permeability are 

simulated on the metric scale without losing the seismic lateral control. 

Through well data analysis and porosity and permeability volumes from the Bayesian 

classification, the vertical and lateral experimental variograms are like those used to the PI 

MCMC inversion (Fig. 48 and Fig. 49). The porosity and permeability pdfs used for the 

cosimulation are showed in Fig. 56. As previously shown in Table 7 basic statistics, MFU1 

concentrate worse permoporous samples and MFU8 better. We considered a cosimulation for 

each MCMC iteration, that is, 100 possible porosity and permeability solutions were calculated 

given the input variograms, pdfs and PI volumes. Mean and individual results are displayed in 

Fig. 57, as well as the corresponding MFU from the related MCMC inversion. In practice, given 

these results, we can stablish pessimistic, optimistic and base scenarios for the Mero reservoir 

considering parameters such as net to gross, porous volumes, and volume in place. 
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Fig. 55 – Mean prior and posterior proportions for DFU and MFU considering 100 MCMC 

iterations. Wells marked with BT were considered as blind tests for the inversion. 
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Fig. 56 – Porosity (above) and permeability (below) pdfs for the cosimulation. MFU1 and 

MFU2 are concentered along the zero-permeability axis. Both Barra Velha and Itapema 

formations show the same behavior. 
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Fig. 57 – (above) Most probable MFU and mean porosity and permeability NW-SE section 

from 100 cosimulation iterations. (middle) Iteration 13 MFU, porosity and permeability results. 

(below) Iteration 42 MFU, porosity and permeability results. 
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We also performed prior and posterior pdfs analysis for the permeability and porosity. 

As previously shown in the PI QC (Fig. 54), the cosimulation produces results below the 

seismic resolution that are compatible with the well data statistics, without relevant 

discrepancies and without losing the seismic constrain in the decametric scale. The comparison 

is presented in Fig. 58, and the QC results corroborates the robustness of the method. 

Summarizing, we produced a series of possible PI, DFU, MFU, porosity and permeability 

volumes through an MCMC inversion and cosimulation, which are laterally compatible with 

the seismic data and vertically with the well data statistics (Fig. 59). 

 

Fig. 58 – Prior and posterior pdfs and cumulative pdfs for the 100 cosimulations for porosity 

and permeability. 



124 

 
 

 

Fig. 59 – (a) MFU mode map from the upper Barra Velha Formation. (b) Porosity and (c) 

permeability minimum, maximum and mean maps from the same stratigraphic layer.  
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4.7 Conclusions 

The proposed workflow provided means to generate numerous possible porosity and 

permeability 3D volumes below the seismic resolution limit, respecting the seismic data in 

decametric scale. Like many seismic Bayesian inference algorithms, the prior information plays 

an important role in the posterior distribution of PI and, consequently, porosity and 

permeability. We highly recommended that prior models are built representing local geology 

aspects or its analogs, constraining some characteristics that sometimes are not sampled even 

in the presence of numerous wells. That is the case of prior and posterior pdfs for MFU1 and 

MFU2, which the prior information volume forces the occurrence of worse permoporous facies 

(clay-rich carbonates) in structural lows, causing a deviation of posterior pdf towards low-PI 

values. These carbonates were not drilled by wells, once they are below the O/W contact. 

However, several analog data from other pre-salt reservoirs indicate the presence of such facies. 

Even in the presence of high MFU superimposed zones in the acoustic domain, our 

workflow achieved a satisfactory posterior blind-well proportion. This issue can be addressed 

by generating a sufficient number of iterations and constraining MFU with its corresponding 

DFU, guaranteeing the seismic correlation at larger scales. As shown in previous studies, DFU 

presents a reduced amount of elastic and acoustic superimposition and can be quantified in 

terms of deterministic inversion and Bayesian probabilistic classification. However, the 

presence of noise and imaging problems in the seismic can propagate errors in the decametric 

scale to metric scale, causing porosity and permeability deviations.   

Understanding flow behavior at decametric scale is the first step to build the dynamic 

reservoir knowledge at smaller scales, but detailed analysis can be performed with much more 

accuracy in the metric scale. In complex reservoir settings, where the fluid flow is inflected by 

numerous processes, it is important to have more flow units to correctly characterize the flow 

behavior, producing more accurate porosity and permeability relations and, consequently, a 

better volumetric distribution of these properties. Uncertainty analysis can be performed 

through the probabilistic outputs of the workflow. We believe that interpretation of scenarios 

based on the volumes generated by our methodology (e.g. P10, P50 and P90) will positively 

impact the static and dynamic model building process, as well as 4D seismic interpretation and 

seismic assisted history matching. 
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5. Final Considerations 

The proposed methods for incorporating flow units into the seismic quantitative 

interpretation workflow were able to present important considerations and solutions about the 

intrinsic problem of constraining porosity and permeability estimations with FU facies. I 

demonstrated that, with the correct upscaling usage and through probabilistic facies calculation 

methods, it is possible to obtain better seismic estimations of porosity and permeability, not 

only in limit by the seismic scale, but also below the seismic resolution limitation. 

My results showed that petrophysical parameters calculated through flow units facies 

were substantially more accurate than when calculated through conventional lithologic facies. 

This was frequently observed in core and well log studies, with less estimated porosity and 

permeability errors compared to the measured data. The volumes produced over the proposed 

workflow will have direct impact on the static and dynamic reservoir 3D modelling, as well as 

seismic assisted history matching, 4D seismic interpretation and general reservoir planning and 

management. 

In the first core data feasibility study, I showed that cumulative porosity and 

permeability S-curves are a powerful tool to visualize different scales of observations in the 

flow units estimation. Through different methods of discretization, I demonstrated that is 

possible to individualize flow units facies using seismic elastic attributes, as p- and s-

impedances. In both core and well log data, the study was able to demonstrate the separation of 

A utilFU facies in the elastic domain and its usability in a 3D study. Although I opted to use 

FZI flow units method of facies estimation due to the large porosity and permeability core data 

availability, I observed some potential in electric methods of discretization. Some karstification 

intervals with limited pore connectivity are presented as best reservoir facies in the FZI method, 

but not in the formation factor method. In the presence of more laboratory electrical 

measurements, it is possible that porosity and especially permeability estimations would be 

even more accurate than using FZI. This could be an interesting field of study for the upcoming 

research. 

Even with the known FZI method limitations and p- and s-impedances values 

superimposition in each of the FU facies, the well log results showed that it is possible to 

separate between upscaled flow units facies in the elastic domain. In contrast to the seismic 

vertical resolution limits, we can deal with the large units of FU associated with a complex 
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geological setting using the cumulative S-curve as a method of upscaling, similar to sequence 

stratigraphy studies of low and high order cycles of sedimentation. This is more accurate than 

simply combine two or more flow units arbitrarily. I also recommend probabilistic methods of 

flow units facies classification associated with scenario analysis prior to interpretation, in order 

to minimize uncertainties associated with the discretization. 

The second study transposed core and well logo data FU classification into the 3D 

domain, using volumetric p- and s-impedance volumes derived from elastic inversion. I 

considered a Bayesian approach for the facies classification, dealing with the superimposition 

of facies in the elastic domain on a probabilistic basis. One of the greatest advantages of using 

this kind of approach is creating occurrence scenarios for each facies, which can be incorporated 

into uncertainties analysis for reservoir management. Also, using flow units as templates, I 

calculated permeability and porosity volumes, which we previously showed in the well domain 

that is more accurate than estimations based on lithologic facies, the standard for reservoir 

geophysics. However, due to the necessity to limit the number of flow units to match the seismic 

vertical resolution, and considering that Mero is a complex geological reservoir, errors and 

miscalculations are still present. Also, FU facies errors due to the acoustic and elastic values 

superimposition, will also impact the final porosity and permeability results. 

The cut-offs values used in the FU discretization, in both metric and decametric scales 

are vital to porosity and, mainly, for permeability estimation. Once the p-impedance versus 

porosity relationship varies a lot from facies to facies, and, consequently, the porosity versus 

permeability relationship, a thorough analysis of the cumulative S-curve determining the cut-

offs values are mandatory. Further studies about this discretization are needed, especially in the 

interpretation of the S-curve as a statistical data. Several areas of science, like biology (i.e., 

bacteria grown), project management, economics (i.e., market evaluation), geography (i.e., 

population studies) considers percentiles, most common values and other mathematical 

techniques to interpret the function. 

The third study is an attempt to push the flow unit classification below the seismic 

resolution limit but maintaining the seismic constraint in the decametric scale. That correspond 

to say that the inversion and facies calculation were made in the decametric scale considering 

the seismic as a constraint for the results and the metric flow units and porosity and permeability 

estimation were made simulating metric flow units facies within each of the decametric facies 

using a Monte-Carlo stochastic approach. In that case, vertical and horizontal variograms, as 



128 

 
 

well as the p-impedance and s-impedance pdfs (probability density function) parametrization 

will represent most part of the uncertainty in the process. Also, the prior probability volumes 

created considering each of the facies proportions from well logs are a point of attention, as this 

act as a qualitative interpretation of the posterior probability. In that type of workflow, having 

many well data is crucial, otherwise calculation errors would be too large to account for. 

I believe that there is a lot of studies that can optimize and improve the workflow 

presented in this thesis. Flow units calculated through electrical methods (both electrical quality 

index and cementation factor based) showed some good signs of improvement related to non-

connected pores, minimizing permeability estimations especially in dissolved carbonates 

settings. Indeed, other recent flow units methods (e.g. FZI-star) can also be stressed, as they 

can present better alternatives apart from the classical FZI method. In my research I followed a 

S-curve visual and qualitative analysis, but it is clear that facies discretization play an important 

role in the final result for porosity and permeability. More research regarding the S-curve cut-

offs criteria in a more quantitative sense is needed, especially in complex settings where 

uniformizing the study in several reservoir is desired. At last, probabilistic results from both 

Bayesian classification and geostatistical inversion can input several studies regarding the 

seismic estimated porosity and permeability uncertainties. This, in turn, is expected to increase 

acuity for static and dynamic reservoir modelling and, finally, 4D seismic interpretation, 

seismic assisted history-matching, fluid-flow modelling or any other research where volumetric 

porosity and permeability is needed. 
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