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RESUMO 

  

A presente dissertação apresenta diversas aplicações do aprendizado de máquina 

para aperfeiçoar técnicas de mapeamento do fundo marinho. Inicialmente, é feita uma 

revisão das metodologias tradicionais de mapeamento do fundo marinho na Baía Rei 

George, Ilhas Shetland do Sul, Antártida. Nesta etapa foi mostrado que diferentes 

informações relativas ao leito marinho (profundidade, backscatter, declividade do fundo, 

etc) são predominantemente independentes entre si. Tal informação foi base para 

aplicação do modelo de aprendizado de máquina XGBoost, utilizado para: extrapolar 

classificação de ecocaráteres, inicialmente disposta em linhas, para uma superfície; 

demonstrar que o modelo pode oferecer resultados preliminares sobre a ecocaracterização 

da área, havendo somente interpretação parcial advinda do especialista; e, por último, 

demonstrar que o modelo é uma alternativa viável para realizar predição em secções do 

dado difíceis de classificar, seja devido à regiões transicionais de eco-tipos ou limitações 

da própria aquisição do dado, que dificultam a interpretação. Ao fim, foram evidenciadas 

aplicações de aprendizado de máquina de baixo custo computacional, aplicabilidade 

doméstica e acurácias balanceadas de até 99% na aplicação do modelo, demonstrando o 

potencial imenso que essa ferramenta pode proporcionar. 

 

Palavras-chave: aprendizado de máquina, geofísica marinha, sísmica de alta 

resolução, batimetria. 
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ABSTRACT 

 

 This research project presents several machine-learning applications capable of 

improving and refining conventional seabed mapping techniques. At first, a review of 

common mapping methodologies was conducted in King George Bay, South Shetland 

Islands, Antarctica. It was noticed that variables, which describe the seabed (such as 

backscatter, depth, slope, etc.), are mostly interdependent. This information was used as 

baseline for a machine learning approach, using XGBoost model to: (i) extrapolate echo-

types – initially represented as lines – along a surface, based on statistic correlations 

relative to bathymetry, backscatter, slope, aspect and more; (ii) to demonstrate that the 

model can offer a preliminary result regarding the echo-types distribution along the 

seismic data, considering a partial interpretation from the specialist; and (iii) to show the 

model could be used to predict sections of the data which the specialist can not interpret 

with confidence (transitional echo-characters, data acquisition limitations, anisotropy, 

etc.). At the end, it was showed that XGBoost is a powerful algorithm to improve SBP 

interpretation and seafloor mapping, achieving up to 99% of balanced accuracy in several 

tests, with low computational cost and feasible to be implemented in a domestic 

environment.  

 

Keywords: machine learning, marine geophysics, high-resolution seismic, 

bathymetry. 
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1. Introdução 

 

 As primeiras sondas, desenvolvidas para operar na investigação do fundo 

marinho, derivaram de sonares militares e começaram a ser utilizadas com finalidade 

hidrográfica a partir de meados do século XX (OHI, 2005). Desde então, houve um 

expressivo desenvolvimento tecnológico e aperfeiçoamento de técnicas e metodologias 

de investigação do assoalho oceânico. Em 1959, perfiladores sísmicos de sub fundo 

começaram a ser utilizados para estudar a geologia marinha (Heezen et al., 1959), e em 

1977 foi criado um sistema de classificação de resposta acústica, utilizado como 

referência até hoje (Damuth & Hayes, 1977). Já em 1998, a Organização Hidrográfica 

Internacional (OHI), na 4ª edição da S-44, considerou que os equipamentos para medir a 

profundidade haviam chegado no estado da arte – alcançando precisões subdecimétricas 

com sondadores de feixe simples em profundidades rasas. Mais tarde, no século XXI e 

principalmente a partir de 2011, a produção científica começou a contemplar, 

progressivamente e de forma expressiva, algoritmos e aprendizado de máquina (Machine 

Learning (ML), em inglês) no contexto do mapeamento marinho (Duarte et al., 2020; 

Leon et al., 2020; Menandro & Bastos, 2020). Dessa forma, entende-se que o 

desenvolvimento de equipamentos e metodologias culminam na atualidade, com o ápice 

do desenvolvimento no âmbito computacional. Essa realidade propicia uma busca por 

novas soluções sob uma nova perspectiva, utilizando ferramentas avançadas de 

inteligência artificial que, não obstante, possuem implementação simplificada e viável em 

ambiente doméstico, respaldadas por uma comunidade ativa e dinâmica de 

desenvolvimento1.  

 

 
1 https://stackoverflow.com/company acesso em 23/11/2021. 

https://stackoverflow.com/company
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2. Definição dos problemas 

  

A dissertação aqui desenvolvida busca soluções para aprimoramento da 

interpretação sísmica e mapeamento do fundo marinho. Isso é feito explorando os 

seguintes problemas: 

(i) Os dados sísmicos monocanal de alta resolução são coletados linearmente, 

conforme a navegação da embarcação. Em contrapartida, a batimetria 

multifeixe – que segue a mesma rota de navegação – adquire dados em 

formato de leque, cobrindo uma área do leito marinho. Notavelmente, há uma 

diferença inerente significativa nos dados adquiridos, em que um representa 

linhas enquanto o outro representa áreas. Assim, torna-se difícil uma 

correlação plena entre esses tipos de dados, a qual objetive uma compreensão 

da disposição dos ecocaráteres em toda superfície batimétrica. Solução 

desenvolvida: extrapolação das linhas classificadas em ecocaráteres para toda 

área abrangida para a batimetria, segundo critérios estatísticos, utilizando 

modelo construído a partir do ML.  

(ii) Na interpretação sísmica de alta resolução, é comum que o especialista se 

depare com respostas sísmicas que não se podem classificar em ecocaráteres 

com tanta certeza. Isso decorre de ecocaráteres transicionais, problemas na 

aquisição, anisotropia, artefatos (objetos não geológicos-topográficos) e 

demais subjetividades que podem causar alguma variação na interpretação. 

Solução desenvolvida: utilizar ML para definir um modelo preditivo, 

especialmente nos trechos cuja interpretação seja duvidosa.  

(iii) Normalmente, a interpretação sísmica de alta resolução é realizada 

manualmente. Esse processo é demorado, principalmente em situações que há 
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um grande volume de dados a serem interpretados. Nesse contexto, é comum 

que haja a necessidade de um resultado preliminar para suporte ao especialista 

e à tomada de decisão. Solução desenvolvida: aplicação do ML 

supervisionado para classificar linhas sísmicas. 

 

 

3. Estrutura 

 

 O objetivo primordial da presente dissertação é evidenciar as possibilidades que 

o aprendizado de máquina (machine learning) pode oferecer para a interpretação sísmica 

voltada ao mapeamento marinho. A dissertação é composta por três artigos, já submetidos 

e em análise de revisão. 

A dissertação inicia-se com o 1º Artigo: A Comparison of Different Acoustic 

Methods for Sedimentary Classification of King George Bay, Antarctica, que consiste em 

uma descrição e análise dos tradicionais métodos geofísicos (batimetria, backscatter e 

sísmica de alta resolução) e outros produtos (declividade do fundo marinho e amplitude 

sísmica) na Baía Rei George, Antártida. O objetivo final é provar que, devido à diferença 

de operação e propriedades físicas que regem cada método geofísico, apesar de serem 

complementares, seus produtos possuem baixa correlação monotônica entre si.  

Entre o primeiro artigo e os demais, um capítulo sobre condicionamento dos dados 

foi inserido. Isso justifica-se pela explicação da estratégia e critérios adotados para montar 

a matriz de dados necessária para as análises procedentes, assim como para servir como 

entrada em métodos de ML. 

Os conhecimentos do 1º Artigo foram base para aplicação de um método de 

aprendizado de máquina supervisionado (XGBoost) na mesma localidade, quando foi 
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percebido que este alcançou elevadas acurácias balanceadas (BA). O resultado motivou 

o 2º Artigo: Machine Learning Modeling Applied for Seabed Echo-Characterization in 

King George Bay, Antarctica, cujo objetivo é a extrapolação da eco-caracterização 

sísmica para toda área abrangida pela batimetria, considerando que as linhas sísmicas se 

situam no interior da superfície batimétrica. Ao resultado da superfície de classes de ecos 

sísmicos, foi adicionado um fator de confiabilidade para a predição, associado à 

probabilidade da decisão que o modelo tomou ao atribuir determinada classe para cada 

ponto de teste. Aqui, é solucionado efetivamente o problema (i) do capítulo 2. 

Seguindo a mesma linha, o 3º Artigo: XGBoost as a Tool to Improve High 

Resolution Single Channel Seismic Interpretation teve como objetivo aplicação do 

método XGBoost na Baía do Almirantado, Ilhas Shetland do Sul, Antártida. Nesse 

momento, o foco foi de evidenciar que o modelo XGBoost consegue predizer, com alta 

BA, tanto pontos aleatórios no dado quanto linhas inteiras. Utilizando apenas 1% dos 

dados de treino foi possível predizer mais de 99% do dado total com BA>90%. De forma 

semelhante, menos de 10% das linhas foram capazes de predizer todas as outras com 

BA>90%. Foi concluído, então, que a abordagem com ML pode fornecer informações 

úteis e auxiliares para o especialista interpretar o fundo marinho, tais quais: (1) interpretar 

segmentos duvidosos; e (2) oferecer produto preliminar da interpretação sísmica da área, 

sugerindo para o especialista uma distribuição de eco caráteres nos dados ainda não 

interpretados. Aqui, são solucionados efetivamente os problemas (ii) e (iii) do capítulo 2.  
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(*) Submitted in Marine Georesources & Geotechnology Journal. 

 

ABSTRACT 

 

Multibeam bathymetric and high-resolution seismic are acoustic remote-sensing 

techniques frequently employed to map marine sediments. Both techniques involve 

applying sonar theory and typically generate consistent and satisfactory results at a 

relatively low-cost relative to direct sampling. However, mainly due to their operational 

peculiarities (frequency range, beam width, etc.), each method generates some 

discrepancies regarding sedimentary distribution for the same area. Here, we compare 

three well-established acoustic techniques (MBES backscatter intensity, sub-bottom 

profiler echo-characterization, and seismic amplitude) applied to characterize seabed 

geology and assess the possible causes of the discrepancies observed among the methods. 

The study area is the glaciomarine environment of King George Bay, South Shetland 

Islands, Antarctica. We demonstrate that each method responds to specific characteristics 

of the seafloor, mainly because of divergent interactions between the acoustic signal and 

morphological features at different scales and sedimentological interfaces. Despite some 

consistencies, considerable mismatches in terms of classification approaches are 
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apparent. Nevertheless, we show how these divergent classification approaches can be 

interpreted together to limit ambiguities and enable more precise geological 

understandings.  

Keywords: bathymetry; high-resolution seismic; echo-characterization; backscatter; 

glaciomarine environment; seismic amplitude. 

 

 

1 INTRODUCTION 

 

Here, we compare three acoustic remote-sensing techniques — namely 

backscatter intensity, seismic amplitude and echo-characterization — to assess 

inconsistencies between respective datasets for a given locality. We explore the causes of 

these discrepancies and describe the King George Bay, aiming for enhancing the 

reliability of seabed acoustic-remote sensing analyses to improve interpretation.   

 

At first, we will briefly describe the glaciomarine environment of our study area 

and its basic sedimentation characteristics, as well the high-resolution seismic and the 

MBES capabilities for seafloor classification. Thereon, in our results we compare the 

occurrence of three echo-characters relative to depth, slope, backscatter and seismic 

amplitude. In this step, we used geophysics tools to understand the occurrence of echo-

characters in the study area. The next step is the statistical analysis, which measured the 

correlation between depth, slope, backscatter, and seismic amplitude. At this point, we 

discuss how this relationship eventually correlate, showing overlaid layers aiming for 

better interpretation. 



 

20 

To inferring sedimentation characteristics of King George Bay based on 

geophysical methods, a quick understanding of sedimentation in this environment is 

necessary. Antarctica’s continental margin, our study area, is characterized as a 

glaciomarine environment, where ice and glacial meltwater are the primordial agents of 

sediment erosion, transport and deposition. In this context, distance relative to the shore 

is a critical parameter for defining sediment depositional processes. For instance, these 

processes can be classified as “glaciogenic” when debris-laden glaciers mobilize the 

sediment directly, “proglacial” when deposition occurs directly in front of the glacier and 

its meltwater is the main transport agent for the sediment, or “glaciomarine” when the 

material is deposited in a marine setting through a combination of glacial- and marine-

associated activity (Anderson et al. 1983; Anderson 1999; Assine & Vesely 2008). 

Classical glaciogenic deposits are coarse and poorly sorted glacial sediments, 

transported by traction primarily at the glacial front, resulting in a chaotic echo-type 

without stratification. Proglacial environments are more dynamic, with glacial meltwater 

and summer rains acting as the main mechanisms for transporting a mixture of pelagic 

sediments and suspension plumes from meltwater, exhibiting subtle stratification and 

more pronounced grain sorting. As distance from the glacial front increases, the influence 

of marine pelagic sedimentation processes also intensifies. In such glaciomarine 

environments, deposits present clear stratification and sediment grain size becomes finer 

through increased grain sorting (Magrani & Ayres Neto 2014; Anderson 1999). 

High-resolution seismic analysis (Sub-Bottom Profiler - SBP) is a geophysical 

approach widely used to map sub-surface structures and to echo-characterize the seafloor, 

encompassing the set of reflected echo characteristics arising from interactions between 

seismic signal and seafloor sediments (Damuth & Hayes 1977). Relative to Antarctica’s 

glaciomarine environment, several researches applied the principles of echo-
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classification. For example, Solli et al. (2007) used SBP profiles to identify glaciomarine 

deposits the eastern Antarctic margin. Their study concluded that seismostratigraphic 

mapping of deep-water depocentres and identification of paleo-channels along a glaciated 

continental margin may provide important information on long-term ice-sheet dynamics, 

particularly with regard to patterns of ice drainage represented by coastal ice streams; 

Magrani & Ayres Neto (2014) also used echo-characters to map sediment distribution in 

Admiralty Bay, Antarctica. They identified four different sedimentary domains and 

distinguished proglacial from glaciomarine sediments; Also in Antarctica, Ramalho 

(2016) noted that, despite sedimentary homogeneity within Port Foster Bay, Deception 

Island, Antarctica, three echo-types could still be characterized and postulated that 

transportation and sedimentation processes organized sediment particles differently. 

Accordingly, disparate sediment frameworks differentially affect acoustic responses and, 

consequently, seabed seismic characteristics; Yoon et al. (2004) applied High-resolution 

(3.5 kHz) seismic to reveal sedimentation patterns in the northern South Shetland 

continental margin and the South Scotia Sea, Antarctica. They discovered eight echo 

types describing the area. 

Besides the echo-classification, seismic amplitude, extracted from the SBP data, 

is widely studied in seismic explorations. This approach has also been applied to seabed 

characterization, including in our study area. Several authors used this technique to 

measure physical properties and classified the sediment types. For example, Brandt et al. 

(2003) used seismic amplitude to predict the shear strength of marine sediments on the 

continental slope of the Gulf of Mexico. The authors were able to extrapolate shear 

strength across a large area with a limited number of sediment cores by inverting the 

seismic amplitude data. Ayres Neto et al. (2016) applied a similar technique to determine 

the total organic carbon (TOC) content of coastal sediments on the southeastern Brazilian 
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continental shelf. Their results indicated an average error of ~5% from using this 

approach. Goff et al. (2004) combined the reflection intensity of Chirp pulses with 

backscatter data to measure seabed properties such as grain size, attenuation and porosity. 

They concluded that vertical-incidence seismic reflection intensity exhibits a stronger 

correlation with in situ velocity measurements, indicating that such data may be more 

reliable than backscatter in terms of deriving sediment physical properties from acoustic 

remote-sensing data. 

Furthermore, the Multi-Beam Echo Sounder (MBES) technique was applied in 

the study area for sediment mapping. Also, it was used as a tool to understand the 

interaction between sediment classification and geomorphology of the seabed. The 

MBES system is based on transmitting and receiving several acoustic pulses to measure 

depth with high precision. Data acquisition is achieved using a transducer fitted on a 

ship’s hull, which emits a signal in a fan-shaped geometry of ~120º and that covers a 

broad expanse of the seafloor. Apart from providing a Digital Terrain Model (DTM) of 

the seafloor, MBES generates backscatter data (the intensity, in decibels, of the received 

energy from each depth measurement) (L-3 Communication SeaBeam Instrument, 2000; 

OHI, 2005; Magrani, 2014). Backscatter intensity is increasingly employed as a tool in 

seabed classification, including for habitat mapping. For example, Simons & Snellen 

(2009) used backscatter intensity to generate a sediment classification for an area in the 

North Sea. They observed that this method displayed a discriminatory performance 

comparable to that of physically taking geological samples in terms of separating all 

seafloor types known to occur in the study area; Lark et al. (2015) used swath bathymetry 

and backscatter data to map seabed sediment texture classes and reported that their 

geostatistical analysis enabled prediction of coarse and muddy sediments in relatively 

quiescent, localized deep-water environments; Naudts et al. (2008) integrated different 
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acoustic techniques to locate gas seeps in the Dnepr paleo-delta of the northwestern Black 

Sea. Their results showed that the observed backscatter patterns were the result of 

ongoing methane seepage and precipitation of methane-derived authigenic carbonates on 

the seafloor. Similarly, Leitão et al. (2016) used backscatter intensity to map the sediment 

distribution within Port Foster Bay, Deception Island, Antarctica, in the same 

environment as our study area, noting a very good correlation between backscatter 

intensity and the sediment type (silt) observed in geological cores taken from the area. 

 

 

2 MATERIALS AND METHODS 

 

Our study area is located in the interior of King George Bay, King George Island, 

which is one of the South Shetland Islands in Antarctica (Figure 1). Sub-bottom and 

MBES data were simultaneously acquired during the XXXIII OPERANTAR Expedition 

of Summer 2014, from which echo-character, seismic amplitude, backscatter intensity 

and depth information was gathered. The survey comprised 70 km of seismic and MBES 

transects covering an area of approximately 10.8 km². The equipment installed onto the 

hull of the Almirante Maximiano included a Kongsberg SBP-120 system, operating in 

the 2.5-6.5 kHz frequency range, and a Kongsberg EM-302 echosounder operating at 30 

kHz. 
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Figure 1 – Study area, located in King George Bay. Navigation lines of both the MBES 

and SBP surveys are indicated by red lines. 

 

The sub-bottom data was preprocessed during acquisition, where the geometrical 

spreading was corrected and the frequency spectrum was limited from 2.5 to 6.5 kHz. 

The processing step used RadExPro 2019.3 software, upon applying the following filters: 

(1) “notch filter” to remove noisy frequencies from 5840 to 5860 Hz, probably due to 

ship’s noise or environmental issues; (2) “data envelope” using the Reflection Strength 

attribute; and (3) “top muting” to remove the water column. The objective of this 

processing workflow was to preserve the data amplitudes without subjecting the dataset 

to further modifications. Additionally, the visibility of the surface and subsurface 

reflectors may enhance with the above mentioned data processing. After this processing 



 

25 

phase, the bottom reflector was selected using a 1-milisecond window to isolate the 

seafloor amplitude value. The SBP echo-characters were interpreted according to criteria 

established in Damuth & Hayes (1977). 

The MBES (Multi-Beam Echo Sounder) data processing was performed in CARIS 

HIPS and SIPS 11.2 software, from which DTM – created from CUBE algorithm, with 

cell size of 3 m – and backscatter – mosaic with the same cell size – information were 

exported. A manual cleaning procedure was conducted to remove spikes and artifacts. 

Tides were not corrected, because of the lack of tide data. It is necessary to consider that 

the region is very remote, and there is not tide monitoring. Moreover, the highest gap 

between bathymetric lines due to tide variation was lower than 3 meters. Therefore, in a 

region with depths ranging from 195 to 444 meters, tidal variation is of little importance 

for assessing the regional morphology of the seabed. The slope information, obtained 

from the DTM using the Global Mapper 20 software, had few isolated artifacts from 50 

to 90 degrees. They also did not influenced the regional analysis neither the statistical, 

since its occurrence is aleatory along data and correspond to less than 0.5% of the data. 

At first, Python was used to manage the exported data (seafloor amplitudes, echo-

characters, depths, backscatter and seabed slope) for subsequent analyses. Amplitude 

values were filtered according to a simple moving average of 11 elements to reduce high-

frequency noise following the methodology proposed by Ayres Neto et al. (2016). All 

data were spatially correlated by means of a Euclidian Distance algorithm using the SciPy 

library so that all datasets are aligned to the same coordinate points of the study area, 

enabling quantitative correlations among datasets. 

Then, we applied a non-parametric statistical Spearman’s Rank Correlation (in the 

SciPy library) to measure the degree of correlation among variables (depth, backscatter, 
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echo-characters, amplitude and slope). We adopted this method because none of the data 

distributions (apart from backscatter) were Gaussian-like.  

Furthermore, we plotted maps of echo-characters, backscatter, slope and 

bathymetry in Global Mapper 20 software in order to check the information obtained 

using the Spearman’s analysis. The Surfer 11 software was used to grid amplitude values 

according to the krigage method (Meng et al. 2013), which is a more consistent 

interpolation algorithm that generates fewer artifacts and is more appropriate for 

irregularly spaced data.  

 

 

3 RESULTS AND DISCUSSIONS 

 

3.1 Echo-characters 

We identified three distinct echo-characters in the study area from the SBP dataset 

(Figure 2), which we classified according to the criteria of Damuth & Hayes (1977). Echo 

1 represents a well-defined seafloor, with strong and diffuse signal penetration and 

without subseafloor stratification. It covers approximately 45% of the area, mostly in the 

shallower northwestern zone (Figure 2). Echo 2 is also shown as a continuous and well-

defined seafloor, but with continuous sub-bottom stratification. It corresponds 

predominantly to the channel talwegs and lies close to the bay’s outfall. Echo 2 covers 

19% of the study area (Figure 2). Echo 3 is characterized by a weak and somewhat 

discontinuous seafloor, with sparse erratic stratification and diffuse signal penetration, 

covering approximately 36% of the study area (Figure 2). 
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Figure 2 – Echo-characters found in King George Bay. 

 

Magrani & Ayres Neto (2014) previously conducted research on Admiralty Bay, 

an area west of King George’s Bay with a similar sedimentary environment, and defined 

three echo-characters (Echos 1, 2 and 4), which exhibit the same characteristics, 

respectively, as our Echos 3, 2 and 1. Echo 1 in Magrani & Ayres Neto (2014) was mainly 

associated with shallow areas of Admiralty Bay, i.e., close to shore and incorporating the 

area directly behind the morainic banks. Geological samples demonstrated that this zone 

comprises a mixture of coarse material transported by glaciers or their meltwater within 

a finer matrix of high sand content (between 32 and 55%). This would correspond to our 

Echo 3. Yoon et al. (2004) also defined a similar echo-character (IA), which was linked 

to semiconsolidated sediments that had been reworked by bottom currents.  

Echo 2 of Magrani & Ayres Neto (2014) and Echo IIA of Yoon et al. (2004) would 

both appear to correspond to our Echo 2. These echo-characters are characterized by a 



 

28 

well-defined seafloor, with sub-parallel sub-bottom reflectors, and represent sediments 

deposited by glacial meltwater plumes and hemipelagic sediments. Geological samples 

from the zone of Echo 2 in Magrani & Ayres Neto (2014) revealed essentially muddy 

sediments with a sand content of <10%. That echo-character covered a central deep zone 

(450-550 m) of the Admiralty Bay fjord, i.e., the same depth range observed for Echo 2 

in King George Bay. 

Our Echo 1, which corresponds to Echos 4 and IIB of Magrani & Ayres Neto 

(2014) and Yoon et al. (2004) respectively, reflects a well-defined seafloor, with strong 

and diffuse signal penetration and lacking sub-bottom reflectors. In both King George 

Bay and Admiralty Bay, these echo-characters cover shallower waters (200-250 m). 

According to Yoon et al. (2004), the respective echo-character in that study (IIB) 

represents till deposits on the continental shelf and upper slope. 

Ramalho (2016) conducted an echo-characterization of the seafloor of Port Foster 

Bay, Deception Island, Antarctica, and distinguished three echo-characters. The Echo 2 

of that study matches Echo 2 for King George Bay reported herein, and his Echo 3 

corresponds to our Echo 1; in both studies, the Damuth & Hayes (1977) criteria were 

applied. Leitão et al. (2016) reported that the whole of Port Foster Bay is dominated by 

silty sediments, with backscatter intensity ranging from -22 to -26 dB. They speculated 

that depositional processes would have influenced how sediment particles were organized 

within the layers, affecting the acoustic response of SBP signal but without backscatter 

differentiation. In contrast, in our study, we observed differentiation between echo-

characters relative to backscatter intensities (Figure 3). The Gaussian distributions 

relative to backscatter intensities achieved, respectively for Echo 1, 2 and 3, means of -

17.18, -18.87, -19.96, standard deviation of 1.69, 1.80, 1.68, and a Coefficient of 

Determination (𝑅2) of 0.9973, 0.9970 and 0.9723 for the best Gaussian fit. Therefore, 
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proving that for each echo-character there is a distinct Gaussian representing the 

backscatter intensity distribution. 

 

Figure 3 – Backscatter intensity distribution for each echo-character. 

 

 

Moreover, it is important to reiterate that whereas King George Bay is essentially 

a glaciomarine environment, the sedimentation characteristics of Port Foster Bay are 

greatly affected by volcanic processes. 

Despite the absence of validating geological samples in our study, a comparison 

of our echo-characters with those described in other studies for similar areas is possible. 

It allowed us to infer that our Echo 1 and Echo 2 correspond to coarse and poorly sorted 

glacial sediments (glaciogenic influenced) to fine well-sorted glaciomarine sediments 

(proglacial influenced), respectively, with our Echo 3 more reflecting proglacial 

sedimentation with some influence from glaciomarine processes.  
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3.2 Relationship between echo-characters and bathymetry/slope 

In Figure 4, we have overlain the bathymetric map with the distribution of echo-

characters to establish if there is any link between bathymetry and the occurrence of 

different echo-characters. Clearly, Echos 1 and 3 dominate the shallower zones, so they 

are probably more influenced by the large-grained and poorly-sorted glacial and 

proglacial sediments, respectively (Figure 4). Echo 2 mainly corresponds to deeper and 

flatter zones, i.e., within the channel talwegs and closer to the bay’s outfall, and probably 

is more reflective of glaciomarine processes. An overlay of slope data with echo-character 

distribution (Figure 5) more clearly illustrates the relationship between Echo 2 and the 

channel talwegs. 

 

Figure 4 – Bathymetry map overlaid with the echo-character distribution. 

 



 

31 

 

Figure 5: Gradient map overlaid with the echo-character distribution. 

 

3.3 Relationship between echo-characters and backscatter 

We overlaid the MBES backscatter intensity map on the echo-character 

distribution (Figure 6) for cross-referencing, which reveals an apparent relationship 

between Echo 3 and the -25 to -20 dB intensity range and/or between Echo 2 and the -20 

to -15 dB range. Moreover, it is expected for the backscatter intensity to lower in bay’s 

outfall direction (SE), as the glaciomarine influence increase. 
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Figure 6 – MBES backscatter intensity map overlaid with the echo-character distribution.  

 

3.4 Relationship between echo-characters and seismic amplitude 

We also overlaid the seismic amplitudes map on the echo-characters distribution 

(Figure 7) to evaluate any relationship between these two variables. Overall, all echo-

characters exist across the amplitude spectrum. Notably, Echo 2 is the only one that is 

strongly linked to areas of high seismic amplitude. This outcome contradicts well-

established relationships between this kind of echo-character and seismic amplitude 

(Damuth & Hayes 1977; Solli et al. 2007; Mendoza et al. 2014; Hong & Shen 2020), with 

the characteristics of Echo 2 typically associated with sediments mainly composed of fine 

particles (clay and silt) with high water content and low P-wave velocity (Jackson and 

Richardson 2007). Such sediments are expected to have low impedance contrast with 

seawater and, consequently, low seismic amplitude values. Magrani & Ayres Neto (2014) 

observed a link between Echo 2 and median seismic amplitude values along the 

continental margin of the South Shetland Island.  
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However, the explanation to this phenomenon is that Echo 2 only occurs inside 

the thalwegs, where slope and grazing angle of the SBP are near zero. Importantly, the 

low amplitude values observed in areas of high gradient likely reflect seismic grazing 

angle. High-resolution seismic equipment, such as SBP, is assumed to operate in a “zero-

offset” geometry. Low grazing angles cause energy to be reflected away from the acoustic 

receiver. It is important to note that not only seabed slope contributes to seismic grazing 

angle, with roll and pitch oscillations of the ship also playing a role. In our case, the 

motion reference unit (MRU) of the EM-302 MBES system was connected to the SBP120 

system to compensate the seismic data for the ship’s attitude. However, this set-up 

operates more as a “swell-filter” and has only limited utility to correct seismic grazing 

angle and amplitude measurement. Moreover, roll and pitch did not reach considerable 

magnitudes, and were below 3°. Accordingly, we consider our data interpretations to be 

essentially topographic-dependent. Therefore, the slope controls the amplitude values of 

the study area. 

 

Figure 7 – Seismic amplitude map overlaid with the echo-character distribution.  
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3.5 Spearman’s Rank Correlation 

Initially, we performed a Spearman’s Rank correlation analysis. It measures the 

quality of a monotonic relationship between two independent variables , with values 

ranging between -1.0 and 1.0 (these extreme values represent perfect negative or positive 

correlation, respectively). Typically, correlations of between (±) 0.6 and 1.0 are 

considered strong, between 0.3 and 0.6 they are "moderate", and between 0.0 and 0.3 they 

are "weak" (Anderson and Finn 1997; Zhang et al., 2021).  

 

Table 1 – Spearman’s Rank Correlation between methodologies. 

 

 

3.6 Relationship between backscatter intensity and bathymetry/slope 

Upon comparing the backscatter intensity and bathymetry maps (Figure 8), we 

observed that greater backscatter signal is related to the flanks of the channels and that 

some bathymetric highs represent harder glacial material. Backscatter intensity largely 

ranges from -20 to -15 dB within the channels, whereas outside them it mostly ranges 

 Spearman’s Rank Correlation (ρ) 

 Backscatter 

versus 

Depth 

Backscatter 

versus Slope 

Backscatter 

versus 

Amplitude 

Amplitude 

versus  

Depth 

Amplitude 

versus Slope 

All data 0.268 0.010 -0.019 0.046 -0.478 

Echo 1 -0.109 0.127 -0.145 0.196 -0.393 

Echo 2 0.446 0.110 0.108 -0.028 -0.271 

Echo 3 -0.138 0.070 -0.068 0.215 -0.348 
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from -25 to -20 dB. The higher backscatter intensities (> -18 dB) are concentrated in 

depths ranging from -200 m to -325 m, with deeper zones (i.e., below -325 m) having low 

backscatter intensities. The Spearman’s Rank Correlation also shows that backscatter and 

depth are weak correlated among Echoes 1 and 3 (𝜌 = −0.109 and 𝜌 = −0.138, 

respectively), indicating that the shallower, the greater the backscatter intensity is in 

mostly coarse and poorly sorted glacial sediments. Otherwise, Echo 2 shows a moderate 

positive correlation, suggesting that the deeper, the greater the glaciomarine influence is 

and, therefore, the mostly glaciomarine sediments are more well selected, reflecting more 

MBES backscatter energy. Moreover, backscatter intensity is not correlated with slope 

(𝜌 = 0.010), due to MBES corrections. 

 

Figure 8 – Backscatter intensity map overlaid with the bathymetric map. 

 

3.7 Relationship between backscatter intensities and seismic amplitude 

We anticipated that high backscatter intensity values would be correlated with 

high amplitude values, since both of these parameters are closely related to the acoustic 

impedance contrast between the seafloor and the overlying water column. However, a 
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comparison of backscatter intensity and the seismic amplitude data did not reveal any 

clear visual correlation (Figure 9). 

 

Figure 9 – Backscatter intensity map overlaid with the map of seismic amplitudes. 

 

We also observed approximately none correspondence between backscatter 

intensity and seismic amplitude in Spearman’s Rank correlation (𝜌 = −0.019). However, 

both properties are primarily dependent on the acoustic impedance contrast between the 

seafloor and the overlying seawater. Magrani & Ayres Neto (2014) analyzed the acoustic 

impedance of Admiralty Bay sediments and reported that sediments showing medium-

high impedance values (around 3000 N.s.m-3) were mainly associated with 

glacial/proglacial sediments, whereas glaciomarine sediments presented low impedance 

values (< 2600 N.s.m-3). It is important to note that the acoustic equipment we used to 

obtain our datasets operate at different frequencies; the SPB120 system emits a 2.5-6.5 

kHz Chirp Pulse, whereas the EM-302 system has an operational frequency of 30 kHz. 

Lower frequency signals can better penetrate the seafloor. Fonseca et al. (2017) 

demonstrated that 30-kHz signal can penetrate up to 30 cm of glaciomarine sediments 
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and that backscatter intensity readout is susceptible to the volumetric characteristics of 

the seabed rather than simply water/sediment impedance contrast. In contrast, SBP 

signals can penetrate several meters below the seabed. As they have much larger 

wavelengths, small sediment heterogeneities are not detected by SBP signal, so its 

interaction with the sub-seabed is restricted to larger features.   

 

3.8 Relationship between seismic amplitude and bathymetry/slope 

To analyze if the spatial distribution of amplitude values can be linked to 

topographic features, we overlaid the seismic amplitude map with our bathymetry (Figure 

10) and gradient (Figure 11) maps. These overlays demonstrate a link between high 

amplitude values and shallow areas of smooth gradients, whereas lower amplitudes are 

associated with higher gradients. This outcome can be explained by the grazing angle of 

the acoustic footprint being very acute relative to a normal vector, thereby weakening the 

returning seismic energy (Biffard, 2010). Moreover, amplitudes greater than 0.06 

correspond to the bottoms of the channels where the seabed is very flat. Therefore, the 

amplitude values on the study area are controlled mostly by the slope, because of the near 

zero grazing angle of the SBP. 
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Figure 10 - Bathymetry map overlaid with the map of seismic amplitudes. 

 

 

Figure 11 – Relationship between seafloor slopes and seismic amplitudes 
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4 CONCLUSIONS 

 

Our findings reveal that the acoustic methods we considered for seafloor 

classification (multibeam backscatter intensity, seismic amplitude and echo-

characterization) are mostly not correlated with each other and provide distinct 

information according to the physical principles of how they are derived. Nevertheless, 

through comparative and detailed analyses of these methods, ambiguities can be reduced 

or removed, thereby improving data interpretations.  

We found that King George Bay has a complex morphology, with three echo-

types strongly similar to those found by Leitão et al. (2016), Ramalho (2016), Magrani & 

Ayres Neto (2014) and Yoon et al. (2004), all classified according to Damuth & Hayes 

(1977). Relative to the backscatter signal, Ramalho (2016) argued that all echo-types 

found in Port Foster Bay, glaciomarine bay in Antarctica, had the same intensity. 

However, in this research we discovered that King George Bay’s echo-types have a 

differentiation (Figure 12), despite the apparent homogeneous distribution of backscatter 

intensity along study area (Figure 6). However, Port Foster Bay is greatly affected by 

volcanic processes in comparison with King George bay, which could explain the 

difference of Ramalho (2016) and our findings.  

We have shown that the sedimentary nature and roughness of the seafloor, as well 

as the grazing angle of the seismic signal, are the main factors controlling acoustic 

responses for these three methods. However, there is a frequency dependency that affects 

signal penetration depth, which determines the impact of the volumetric characteristics 

of sediment for low-frequency signals. Such effects are theoretically known, but were not 

directly evaluated in our comparison of the methods.  
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We understand that echochacterization of the seafloor is a very subjective 

approach and depends greatly on the expertise of the individual conducting the analysis. 

However, since the variables (depth, backscatter intensity, amplitude, and slope) are 

largely independent, an artificial intelligence algorithm could be trained to predict echo-

characters, based on classification supervised-learning. An implementation of a semi-

automatic procedure to map the sedimentary distribution of a region of seafloor would 

have significantly positive temporal and cost implications, enabling a more efficient 

generation of reliable results and predictions. This solution is an ongoing research, which 

required prior analysis and understanding of the disposition and correlation of the 

variables depth, backscatter, seismic amplitude, echo-characterization and slope of the 

study area. 
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4. Condicionamento dos dados 

 

A etapa de condicionamento dos dados é a que organiza e estrutura os dados para 

serem inseridos em determinada função/modelo. Ao todo, para atender todas as 

finalidades deste trabalho, foram gerados dois datasets para cada uma das baías, com as 

respectivas características: 

• Dataset1 da Baía Rei George, o qual contém coordenadas UTM (EPSG 32732; 

WGS84; hemisfério sul) (X, Y) em metros, dados de ecocaracterização da área 

(ECO) classificados em classe 1 (Eco1), classe 2 (Eco2) e classe 3 (Eco3), com 

correspondentes atributos: profundidade (Z) em metros, backscatter (BS) em 

decibéis, declividade do fundo (SLOPE) em graus, distância para a 

desembocadura da baía (distOUTFALL) em metros e distância para o 

continente/frente de geleira (distGLACIER) em metros (Figura 1); 

 

Figura 1: secção do Dataset1, relativo à Baía Rei George. 

 

• Dataset2 da Baía Rei George, o qual contém todos os dados da superfície 

batimétrica, incluindo os atributos X, Y, Z, BS, SLOPE, distOUTFALL e 

distGLACIER (Figura 2); 
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Figura 2: secção do Dataset2, relativo à Baía Rei George. 

 

• Dataset1 da Baía do Almirantado, o qual contém os atributos X, Y, ECO, Z, BS, 

SLOPE, distOUTFALL, distGLACIER, ASPECT e nome da linha sísmica (line) 

(Figura 3); 

 

Figura 3: secção do Dataset1, relativo à Baía do Almirantado. 

 

• Dataset2 da Baía do Almirantado, o qual contém todos os dados da superfície 

batimétrica, incluindo os atributos X, Y, Z, BS, SLOPE, distOUTFALL, 

distGLACIER e ASPECT (4); 

 

Figura 4: secção do Dataset2, relativo à Baía do Almirantado. 

 

Os atributos dos Datasets1 e 2 diferem no sentido que os Datasets1 contém o 

atributo ECO; e os Datasets da Almirantado diferem da Rei George por aqueles conterem 

o atributo ASPECT. A escolha de suprimir o atributo ASPECT dos dados provenientes 

da Rei George justifica-se por ter ocasionado ruídos e redução da acurácia do modelo 

testado. Portanto, foi completamente descartável para a análise e optou-se pela remoção 

completa; entretanto o mesmo não foi observado no Almirantado, o qual obteve papel 
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relevante para aumento da precisão do modelo. Além disso, o Dataset2 do Almirantado 

contém um atributo exclusivo, referente ao nome das linhas sísmicas classificadas. Isso 

se dá por um requisito necessário para aplicação no 3º Artigo: XGBoost as a Tool to 

Improve High Resolution Single Channel Seismic Interpretation. Abaixo, segue descrição 

da metodologia desenvolvida para criação dos datasets. 

Inicialmente, os grids profundidade (Z) em metros, backscatter (BS) em decibéis, 

declividade do fundo (SLOPE) em graus e direção da declividade do fundo (ASPECT) 

em graus estão separados, apesar de geográficamente sobrepostos. Cada um deles 

corresponde a uma tabela de três colunas, nomeadas ‘X’, ‘Y’ e respectivo atributo (Z, BS, 

SLOPE, ASPECT). Para correto condicionamento, é necessário que todos esses grids 

estejam concatenados em uma só tabela.  

Para realizar a concatenação dos Datasets1 do Almirantado e Rei George, foi 

fixado determinada coordenada geográfica da linha sísmica (X, Y, ECO) e, 

posteriormente, atribuído a ela a medição mais próxima (vizinho) de Z, BS e SLOPE, no 

caso da Rei George, ou Z, BS, SLOPE e ASPECT, no caso do Almirantado, desde que 

estejam espaçados em até duas vezes o espaçamento do grid da batimetria (Figura X). 

Para a Baía Rei George, esse espaçamento do grid foi de 3 metros, enquanto na Baía do 

Almirantado foi de 4 metros (Figura 5).  
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Figura 5: esquema mostrando como os Datasets 1 do Almirantado e Rei George foram 

construídos, segundo critérios espaciais. 

 

Para realizar a concatenação dos Datasets2 do Almirantado e Rei George, foi 

fixado determinada coordenada geográfica da batimetria (X, Y, Z) e, posteriormente, 

atribuído a ela a medição mais próxima (vizinho) de BS e SLOPE, no caso da Rei George, 

ou BS, SLOPE e ASPECT, no caso do Almirantado, respeitando a mesma regra de 

espaçamento dos Datasets1 (Figura 6). 

 

Figura 6: esquema mostrando como os Datasets 2 do Almirantado e Rei George foram 

construídos, segundo critérios espaciais. 

 

Para tal, algumas metodologias foram implementadas e testadas, e a complexidade 

dos algorítmos foi avaliada. A complexidade do algoritmo (𝑂) é uma medida da 

quantidade de operações fundamentais/primitivas dentro de uma função com entrada de 

tamanho 𝑛, a fim de avaliar seu custo computacional. Dessa forma, permite comparar o 

desempenho de diferentes funções entre si, avaliado suas taxas de crescimento de 

complexidade/custo computacional. As abordagens avaliadas foram: 
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(1) Fixar um determinado ponto (𝑃𝑥, 𝑃𝑦) geográfico da malha de profundidade (X, Y, 

Z) e calcular via distância euclidiana o vizinho (𝑄𝑥, 𝑄𝑦) mais próximo com 

medição de BS, SLOPE e ASPECT. A distância Euclidiana (D) é definida por: 

𝐷 = √(𝑃𝑥 − 𝑄𝑥)2 + (𝑃𝑦 − 𝑄𝑦)2. 

Nessa abordagem, foi utilizada a função scipy.spatial.distance.cdist2. 

Considerando como exemplo o dataset do Almirantado, que contém 

aproximadamente 5.4 milhões de medições (𝑛 = 5,4 ∗ 106) de Z, de BS, de 

SLOPE e de ASPECT, a quantidade de iterações do algoritmo é na ordem de 3 ∗

(5.4 ∗ 106)2 ≅ 8,7 ∗ 1013. Como cada iteração leva em torno de 2,34 ∗ 10−8 

segundos para ocorrer, tem-se o tempo estimado médio de 2 ∗ 106 segundos para 

calcular a concatenação, ou aproximadamente 23 dias e 4 horas. Essa abordagem 

é a mais simples para o problema, entretanto devido ao elevado tamanho do 

dataset se torna impraticável pelo tempo computacional exigido, na medida em 

que possui crescimento quadrático – a complexidade desse algorítmo é 𝑂(𝑛2). 

(2) Cálculo de distância Euclidiana da abordagem (1), entretanto utilizando GPU 

oferecida pela plataforma da Google Colab3. Para implementação foi utilizada a 

API da RapidsAi4 que, instalada em máquina virtual e configurada no Colab, 

integrou as bibliotecas CuPy5 e CuDf6, designadas para operar na GPU oferecida 

gratuitamente pela Google. Nesse caso, foi utilizada a GPU Tesla T47 em 

detrimento da CPU CORE i7-7500 2.70GHz utilizada nas abordagens (1) e (3). 

 
2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html SciPy v1.7.1. 
3 https://colab.research.google.com/ acesso em 23/11/2021. 
4 https://rapids.ai/start.html acesso em 23/11/2021. 
5 https://github.com/cupy/cupy/ acesso em 23/11/2021. 
6 https://github.com/rapidsai/cudf acesso em 23/11/2021. 
7 https://www.nvidia.com/pt-br/data-center/tesla-t4/ acesso em 23/11/2021. 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html
https://colab.research.google.com/
https://rapids.ai/start.html
https://github.com/cupy/cupy/
https://github.com/rapidsai/cudf
https://www.nvidia.com/pt-br/data-center/tesla-t4/
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Dessa forma, a velocidade de processamento foi aumentada, reduzindo o tempo 

total de concatenação para aproximadamente 66 minutos. 

(3) Cálculo do vizinho mais próximo de determinado ponto utilizando a ferramenta 

K-D-Tree. Essa metodologia, implementada através da biblioteca pykdtree8, é por 

definição uma árvore de busca binária que contém k valores em cada nódulo da 

árvore. No referido caso de aplicação, temos k correspondente à quantidade de 

variáveis descritivas do fundo. O tempo computacional gasto foi de 4,5 ∗ 10−2 

segundos para concatenar Z, BS, SLOPE e ASPECT no dataset do Almirantado. 

Para essa abordagem, a complexidade da K-D-Tree é 𝑂(𝑛). 

 

Avaliando as complexidades de algoritmos das abordagens (1), (2) e (3), 

observamos uma discrepância enorme em termos de complexidade, visto que (1) e (2) 

crescem quadraticamente e (3) cresce linearmente. Nesse cenário, para valores muito 

grandes de n, algoritmos de complexidade quadrática tendem a se tornar inviáveis 

computacionalmente. Por outro lado, a GPU Tesla T4 possui 320 núcleos para paralelizar 

o processamento, ocasionando um tempo de processamento cerca de 505 vezes menor 

para a complexidade 𝑂(𝑛2). Visto o exposto, conclui-se que a implementação K-D-Tree 

é a mais simples e rápida computacionalmente quando se objetiva encontrar o vizinho 

mais próximo, podendo ser empregada em computadores domésticos com facilidade. 

Alternativamente, quando o alto custo computacional for inevitável, a GPU torna-se a 

saída mais eficaz. 

O próximo passo é incluir os atributos distância até desembocadura da baía 

(distOUTFALL) e distância até o continente, ou a frente de geleira (distGLACIER). Para 

tal, resta somente as soluções (1) e (2), que calculam a distância euclidiana entre as 

 
8 https://pypi.org/project/pykdtree/ acesso em 23/11/2021. 

https://pypi.org/project/pykdtree/
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coordenadas da tabela montada nas Figuras 5 e 6 e a desembocadura da baía e 

continente/frente de geleira. Para esta etapa, foram necessários cerca de 150 pontos 

definidos manualmente para delimitar a desembocadura e continente das baías Rei 

George e Almirantado, implicando em um custo computacional estimado de 20 segundos 

utilizando a abordagem (1) (Figura 7). 

 

Figura 7: da esquerda para a direita: em azul marinho, a desembocadura das baías e, em 

marrom, a delimitação continental/frente de geleira das baías Almirantado e Rei George, 

respectivamente. No interior das baías, o DTM (Digital Terrain Model) batimétrico de 

cada uma das áreas. 

 Após concatenação de todas os atributos, tem-se que todos os datasets empregados 

nesse trabalho estão finalizados (Figura 8). 
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Figura 8: Datasets 1 e 2 das Baías Rei George e Almirantado, após procedimentos de 

concatenação. 
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ABSTRACT 

 The combination of multibeam bathymetry, backscatter and high-resolution 

seismic is a well-known method for seafloor mapping. In this context, we highlight the 

difference between bathymetry – that covers the totality of the survey area – and high-

resolution seismic data, restricted to the survey lines. This discrepancy interferes 

negatively in the interpretation of the seabed since correlation between bathymetry and 

seismic becomes limited. In this research, we applied machine learning modeling to 

extrapolate the echo characterization (obtained from seismic interpretation) to the area 

covered by the multibeam bathymetry. The approach was developed and explored, 

obtaining outcomes around 98% of balanced accuracy using eXtreme Gradient Boosting 

(XGBoost). Our results encompass redundancy analysis, data explainability, feature 

selection, prediction for data extrapolation and further analysis. In conclusion, we 

established a reliable workflow, which achieved an auxiliary tool for seafloor 

characterization. Our research provides a useful alternative approach for mapping 
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geospatial data which may have acquisition limitations (cost, high complexity, etc.), since 

one has enough gridded data available from and area of interest and liable to be related.  

Keywords: data processing, echo-characterization, seismic, bathymetry, machine-

learning. 

 

 

INTRODUCTION 

Many marine activities (marine geology, commercial fishing, offshore oil 

exploration and production, cable and pipeline maintenance, underwater warfare, 

engineering works, wind farms, and dredging operations) need tools and methods to 

characterize and understand the seafloor. Multibeam Echo Sounders (MBES) are well 

designed for this task: usually installed under a ship’s hull, it transmits a sound pulse 

(ping) with a wide across-track and narrow along-track angular sector. Those fan-shaped 

beams can acquire high-density data from large areas of the seabed. Moreover, MBES 

systems have quickly developed over the last 60 years, being a reliable way to 

characterize the seafloor. They are considered one of the main mapping systems, due to 

the ability to provide both bathymetric and backscatter image of the surveyed area. The 

bathymetric data outputs an accurately georeferenced digital terrain model (DTM), while 

the backscatter image is a mosaic of echo amplitudes containing information about the 

nature and geoacoustic properties of the seafloor (Hellequin et al., 2003; Xinghua and 

Yongqi, 2004; Zhou et al., 2020). Another important tool is the high-resolution seismic, 

acquired by sub-bottom profiler (SBP) systems. The equipment is also usually mounted 

in the ship’s hull, emitting a vertically directed acoustic pulse that interacts with the 

seafloor. When it operates in frequencies below 10 kHz, the seismic signal can penetrate 
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deep in the seabed, revealing inner sedimentary settings. Those acoustic responses – 

known as echo-types – are visible due to impedance contrast between different layers 

defined by transport and nature of the sediments. The SBP data can be interpreted 

according to echo-types, whereas each echo-type can be correlated with seafloor 

composition, if physical sediment samples are obtained. However, the approach to collect 

physical samples is very expensive and limited. Similarly SBP data only acquire linearly, 

along ship’s navigation track (Saleh and Rabah, 2016; Wang et al., 2021), and can be 

considered a limited method as well when compared to MBES area data acquisition 

property. 

There is a huge discrepancy in term of amount of information in this scenario, 

since bathymetry is a surface arrangement and seismic is settled as navigation lines. Since 

echo characterization is confined to seismic lines, its interpretation is barely related with 

other attributes, such depth, backscatter intensity, seafloor slope and more. This article 

aims to offer a way to understand echo characterization as a coverage layer, a surface that 

can overlay any other; built based on correlations with geophysical, topographic or any 

other griddable data. To achieve our goal, we used eXtreme Gradient Boosting 

(XGBoost) algorithm to predict echo-types in the area covered by the bathymetry, using 

the SBP data for training and evaluation of the model. In other words, our research intends 

to overcome the acquisition limitation of SBP data, offering an auxiliary way to interpret 

the seabed. 

Several authors, as we propose, used machine-learning techniques to predict 

missing data and improve mapping, estimations, interpretations, and data acquisition 

limitations in remote sensing field. Li et al. (2020), for example, used multiple 

environmental variables (griddable data from area of interest) to map soil thickness, a 

difficult and expensive data to acquire. They found that XGBoost outperformed other 
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models, predictiong a map with limited validation data. Sahin, 2020 built a map of 

landslide susceptibility based on few landslide occurrences. He constructed his dataset 

based on existing maps, digital terrain models and satellite images. He also found that 

XGBoost had better performance in ensemble models. Shendryk et al. (2020) also applied 

XGBoost for mapping an invasive grass in tropical savannas of northern Australia. They 

reached up to 91% of accuracy using satellite images, and collecting field data for 

supervised learning. Arabameri et al. (2021) did a spatial modeling of gully erosion using 

ensemble algorithms, where GE-XGBoost got the best performance, with 89.56% of 

accuracy. They used spatial data and database containing recorded instances of erosion, 

arguing that their model is a promising method for large-scale mapping of gully erosion 

susceptibility. Emadi et al. (2020) predicted and mapped the content of Soil Organic 

Carbon (SOC), in northern Iran, using several AI algorithms, including XGBoost. They 

used soil samples, satellite images, terrain attributes, climatic data, and other data to 

extrapolate the SOC content in a bigger area. They also stated that their predicted map 

could be used as a base line for further studies, both locally and in a worldwide scale.  

 Considering these researches, this paper presents such a similar methodology for 

the prediction of seismic echo-characterization. Our dataset includes well-known 

techniques for seafloor mapping, such as bathymetry, backscatter and high-resolution 

seismic. Many authors used those tools to classify both morphologically and 

sedimentologically the seabed. Early 2000's, Hellequin et al. (2003) and Xinghua and 

Yongqi (2004) demonstrated the importance of bathymetry and backscatter processing 

for seafloor characterization. More recently researches point to the same direction. 

Magrani (2014), for example, used bathymetry and echo-characterization to map the 

morphology, sediment distribution and sedimentary thickness of Admiralty Bay, South 

Shetland Islands, Antarctica. Saleh and Rabah (2016) used Sub-Bottom Profilers (SBP) 
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for sediment classification, estimating and analyzing reflection and sediment absorption 

coefficients. Ji et al. (2020) used several features, including backscatter data, for sediment 

classification of the seabed. They achieved accuracies over 90%, and extrapolated the 

classification of few samples to the whole surveyed area. Wang et al. (2021) classified 

seabed sediments based on particle size parameters, using XGBoost. They suggested that 

the model could be used as an auxiliary or alternative approach for sediment texture 

mapping, as well as supplementary to the analysis of sedimentary environment.  Finally, 

Marsh and Brown (2009) used multibeam bathymetry and backscatter data for seabed 

classification, through neural network. They stated the need to develop automated 

computational methods that transform large areas of spatially-complex (‘high 

dimensional’) bathymetric and backscatter data into simpler, easily-visualization (‘low 

dimensional’) maps that, in some way, characterize the seafloor. We could not agree 

more, since our goal is to overcome a data acquisition limitation and predict echo-types 

within a bigger area, transforming an overlay of grids (high dimensionality) into a simpler 

one – the echo-character map. 

The study area is the King George Bay, located in King George Island, South 

Shetland Islands, Antarctica. This area was surveyed with sub-bottom profiler and 

multibeam bathymetry concomitantly. The data consisted of a bathymetric DTM of 10.8 

Km², and approximately 58 Km of echo-classified high-resolution seismic lines (Figure 

1). 
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Figure 1: King George Bay’s data, regarding SBP echo-characters and bathymetric 

coverage. 

 

MATERIALS AND METHODS 

The fundamental stages of the adopted methodology comprises the following 

steps: (1) preprocessing, involving the data filtering and conditioning; (2) data analysis, 

redundancy analysis, explainability, and feature selection; and (3) prediction, relative to 

the echo-classification extrapolation and posterior analysis, which contemplates 

geological coherence, computational cost and uncertainty map (Figure 2). 
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Figure 2: workflow of the present methodology. 

 

 Initially, the data was submitted to carefully preprocessing steps. This stage is 

fundamental for ML models, since it guarantees the best quality of the data used for 

training (Huang, Li and Xie, 2015). First, outliers, inconsistent data and artifacts (non-

geological-topographical structures) were all removed from the training dataset. We 

mostly removed anomalies caused by the absence of tide correction, which resulted in 

slopes ranging from 50 to 90 degrees, and backscatter inconsistencies in the seafloor. 

Moreover, this stage filtered missing values and categorical variables. Fortunately, only 

0.5% of the entire dataset was removed. 

 In the data conditioning stage, we used a Eucliden Distance algorithm to connect 

all data grids and assemble the datasets. Each grid relates to a different feature, which are: 

depth (Z), in meters, set as negative below sea level; seafloor slope (SLOPE), in decimal 

degrees, extracted from the bathymetric DTM using Global Mapper 20 software; 

backscatter intensity (BS), in decibels, that correspond to the intensity of the returned 
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bathymetric signal; distance relative to the glacier front (distGLACIER), in meters, which 

controls the content of proglacial material in the sedimentary deposit; and the distance 

relative to the bay’s outfall (distOUTFALL), in meters, which controls the glaciomarine 

influence in the sedimentary deposit (Anderson, 1999; Anderson et al, 1983; Magrani, 

2014). We created the distOUTFALL and distGLACIER features, motivated by previous 

studies (Anderson, 1999; Anderson et al, 1983; Leitão, 2015; Leitão et al., 2016; Magrani, 

2014; Viana, 2014). These authors claimed that distances relative to the glacier front and 

to the bay’s outfall influences the sedimentary setting. Our prediction target are the echo-

types, previously classified as Echo 1, Echo 2 and Echo 3 and according to Damuth, J. 

E., & Hayes, D. E. (1977) criteria (Figure 3).  

 

Figure 3: relationship of each feature relative to the target (last rectangle). 

 

 The grid spacing was set to 5 m (Figure 4, represented by black dots), despite the 

SBP ping rate results in approximately 1 m distancing between seismic traces (Figure 4, 

represented by red dots). The Euclidean distance algorithm associate one red dot to the 

closest black dot, with a threshold of 10 m – two times the feature grid spacing. In this 

context, several SBP samples (echo-types) registered the same Z, BS, and SLOPE 
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information, which imply in duplicated information in the dataset for the same target 

classification. Consequently, this data redundancy added an unreal and random weighing 

into the ML model used in our approach. To solve this problem, we deleted all duplicated 

rows with the same value of ECHO, Z, BS, and SLOPE. This redundancy filtering 

reduced the validation data in 74.4%, with an accuracy loss of 1% using eXtreme Gradient 

Booster (XGB) method. The accuracy loss is interpreted as an uncertainty of the model, 

caused by incorrect weighing. Moreover, the dataset reduction improved a lot the 

computational cost, with an average processing time reduction of 70% for model fitting 

and testing. 

 

Figure 4: data conditioning stage, regarding grid spacing. Feature data represented in 

black dots, while target data in red dots. 

 

 The data were splitted into two sets: Dataset1 (14,857 rows), which contains only 

data with validation – therefore, each echo-type measurement with its respectively closest 

features –, and Dataset2 (427,576 rows), which has no validation data – corresponding to 

the whole area without echo-classification. The Dataset1 is unbalanced: 48.3% of the data 

corresponds to Echo1, 14.9% to Echo 2 and 36.8% to Echo 3 (Figure 5).  
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Figure 5: Example of Dataset1. Dataset2 has the same structure, but without the column 

‘ECHO’ (no validation data). 

 

Proceeding the data analysis stage, we chosen the eXtreme Gradient Boosting 

(XGBoost) algorithm to perform our supervisionated modeling. Based on the boosting 

strategy, XGBoost can obtain a strong learner from weak learners. The XGBoost 

algorithm can improve computing speed by parallel learning, prevent over-fitting and 

improve performance. Also, it is widely used by data scientists to achieve state-of-the-art 

results on many machine learning challenges, such as Kaggle (17 of 29 winning solutions 

in 2015) and KDDCup 2015 (all 10 winning teams used XGB) (Ariza-Garzon et al., 2020; 

Chen and Guestrin, 2016; Li et al., 2020). Moreover, several authors applied this 

algorithm for mapping in geoscience and remote sensing fields (Arabameri et al., 2021; 

Emadi et al., 2020; Ji et al., 2020; Li et al., 2020; Sahin, 2020; Shendryk et al., 2020; 

Wang et al., 2021), achieving consistent results. Before the training stage, Dataset1 was 

normalized (*1) and randomly splitted without repeated elements, 80% for training and 

20% for validation. Every data-splitting procedure, including this one, took into 

consideration the 0.8-0.2 ratio and the proportionally stratified sampling (*2), due to the 

imbalanced dataset. We used the balanced accuracy score as metric of our model (*3). 

Then, a preliminary training was done as basis for further data analysis. 
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The data analysis stage embraces redundancy analysis, data explainability and 

feature selection techniques, aiming for data/model comprehension and feature selection. 

Understanding why a model makes a prediction is important for trust, actionability, 

accountability, debugging, and many other common tasks. We established a guideline to 

define what is and what is not important for the prediction, seeking to avoid redundancy 

and overfitting. Those tools provide the necessary information for a possible 

dimensionality reduction, therefore improving computational cost (Ariza-Garzon et al., 

2020; Coyle and Weller, 2020; Lundberg and Lee, 2017a; Raihan-Al-Masud and Mondal, 

2020; Roscher et al., 2020). Moreover, this stage provides necessary information to 

understand the decisive variables that control class occurrence in this environment. For 

redundancy analysis, explainability and feature selection, several tools were tested: 

Spearman’s Rank Correlation (*4) and Principal Component Analysis (*5), to check for 

correlations between features; a comparison between XGB feature importance (*6), 

SelectKBest function (*7) and SHAP importance (*8), in order to rank the most relevant 

features; SHAP values, to comprehend how the model makes decisions; and an iterative 

approach, which provides information of every combination of features.  

An important step for dataset improvement is the redundancy analysis. To solve 

this issue, Spearman’s Rank Correlation matrix evaluate the monotonic degree of 

relationship between features. A monotonic relationship measures if a variable ‘A’ is 

directly or inversely correlated to another variable ‘B’. We chose Spearman’s instead of 

Pearson’s because our data is mostly non-parametrized. High correlations (>0.9) could 

imply in redundant data and, therefore, excessive processing time. We set correlation 

values based on Anderson and Finn (1997): weak correlation from 0 to 0.3; medium 

correlation from 0.3 to 0.6; strong correlation from 0.6 to 0.9; and perfect correlation from 

0.9 and 1. 
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Aiming an in-depth understanding of the possible redundancy between features, a 

Principal Component Analysis (PCA) were conducted. This is a technique for reducing 

the dimensionality of datasets, increasing interpretability but at the same time minimizing 

information loss. It does so by creating new uncorrelated variables that successively 

maximizes variance. The same features inputted in the XGB model constitute the new 

variables, or Principal Components (PC’s). Each PC explain a percentage of the variance 

of the data, making possible to evaluate the redundancy of the features: if the features are 

redundant, they will express themselves in the same proportions in the PC’s. Otherwise, 

they will compose the PC’s in some unique way. (Jolliffe et al., 2016; Maćkiewicz and 

Ratajczak, 1993; Shlens et al., 2014). 

Later, we compared several methods that attribute feature importance, due to 

inconsistent results: they often assign higher importance to features with lower impact on 

the model’s output (Lundberg and Lee, 2017a). Our guideline is to address functions with 

increasing computational cost, comparing the cost-benefit of each approach.  

At first, we computed the XGB feature importance. Because it is an inner output 

from XGBoost model, it has no additional computational cost. Five importance types can 

be calculated (*6):  

• Weight, defined as the number of times a feature is used to split the data across 

all trees. 

• Gain, defined as the average gain across all splits the feature is used in. It implies 

the relative contribution of the corresponding feature to the model calculated by taking 

each feature’s contribution for each tree in the model. A higher gain means the feature is 

more important for generating a prediction. 
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• Cover, defined as the average coverage across all splits the feature is used in. 

This metric means the relative number of observations related to this feature, reflecting 

the proportion of leaf nodes each feature decides. 

• Total_gain, defined as the total gain across all splits the feature is used in; 

• Total_cover, defined as the total coverage across all splits the feature is used in. 

SelectKBest function, on the other hand, assigns importance scores based on 

univariate statistical tests, computing the ANOVA F-value variance (*7). 

Finally, we computed the SHAP (SHapley Additive exPlanations) feature 

importance (*8), considered the only consistent feature attribution method by Lundberg 

and Lee (2017a). This tool provides a better interpretability for the model, assigning to 

each feature an importance value for a particular prediction. SHAP values have three 

proprieties: local accuracy, which determines that the explanation of the model should 

match the original model; missingness, if the simplified inputs represent feature presence, 

then missingness requires features missing in the original input to have no impact; and 

consistency, which states that if a model changes so that some simplified input’s 

contribution increases or stays the same regardless of other inputs, that input’s attribution 

should not decrease (Ariza-Garzon et al., 2020; Lundberg and Lee, 2017b, 2017a; 

Lundberg, S.M., Erion, G., Chen, H. et al., 2020). However, since SHAP measures the 

feature importance for each class, we did a weighted average (respecting the data 

imbalance) for all classes and defined the overall importance for every feature. Later in 

explainability stage, SHAP values were computed also aiming understand how the model 

take decisions. 

As the true evidence for evaluate previous redundancy, explainability and feature 

selection analysis, we implemented an iterative approach that computes the accuracy and 
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time performances of all possible combinations of n features. This methodology was used 

to find and select key feature combinations among a dataset. This tool is considered the 

ultimate validation for feature selection/elimination, because it iteratively computes the 

model with different feature combination setups (Mosavi et al., 2020). This test intended 

to be the last performance validation of feature importance methods, clarify possible 

redundancy between features and to, finally, define the best feature combinations for n 

features. This methodology is the most expensive regarding processing time.  

 The prediction stage trained the model with the entire Dataset1 and realized a 

prediction with Dataset2. The result was an echo-classification coverage layer, along all 

area covered by the bathymetry. In this step, we compared the layer with and without 

optimization, always aiming for geological coherence. An uncertainty map was also used, 

built based on the XGBClassifier.predict_proba() (*6). The function outputs the 

probability, for each measurement, of being Echo 1, Echo 2 or Echo 3. We stablished a 

threshold of uncertainty of 5% and created a map of predictions with less than 95% of 

confidence. 

 The usage of XGB model, as well all the analysis and studies, were done using 

the same machine, with a CORE i7-7500 CPU 2.70GHz processor, and 8Gb RAM 

memory. 

 

 

3 RESULTS AND DISCUSSIONS 

 

Spearman’s Rank Correlation 
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 As a preliminary step, we verify the redundancy of features in Dataset1. The 

Spearman’s Rank Correlation showed expected medium and strong correlations: when 

depth (Z) increases, distance to the glacier increases, and distance to the bay’s outfall and 

backscatter decreases. Moreover, according to this test, since there are no high (>0.9) 

correlations levels, there would be no redundant features in the dataset (Figure 6). 

 

Figure 6: Spearman’s Correlation Rank matrix, computed to analyze the monotonic 

relationship between features. 

 

Principal Component Analysis (PCA) 

 Another tool that can be used before ML application is the Principal Component 

Analysis (PCA). When two features are perfectly correlated, they are expressed by the 

same number of Principal Components (PC’s) and shares uniquely one PC. The results 

showed that features Z and distGLACIER have similar PC distribution, therefore 

explaining data variance in a suck like way and being potentially redundant (Figure 7). In 

addition, PC5 is mostly distributed in the Z and distGLACIER features (85%), which 

corroborate this idea. However, since Spearman’s Rank test measured a correlation 

coefficient of -0.74 (therefore not perfect-correlated) between these two features, we 
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decided to keep them in the dataset. It is important to reiterate that Spearman’s Rank and 

PCA are basis for feature selection/elimination, whereas reduce the computational cost 

before inputting data into the model.  

 

Figure 7:  the PCA result, showing how each PC explains each feature. 

 

Feature importance 

  In this step, we compared different methods for feature importance attribution, 

with increasingly processing time. XGB feature importance, as an inner product of 

XGBoost model output, does not have any additional processing cost. It can be calculated 

based on ‘weight’, ‘gain’, ‘total_gain’, and ‘total_cover’, which are countable 

characteristics of gbtrees. SelectKBest had 0.003 s of processing time, and SHAP 

importance took 5.6 s. Comparing each attribution method (Figure 8), we observe that  

different methods for the same dataset has inconsistent results, as stated by Lundberg and 

Lee (2017a). Therefore, picking one method solely as a reliable importance rank between 

features can imply in a non-optimal feature selection procedure. Moreover, it can lead to 

a misunderstanding about the key features that control the echo occurrence in the area. 

On the other hand, a reliable way to measure importance of features can clarify and 
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quantify what the literature considers as key factors that control sedimentary settings in 

glaciomarine environments.  

 

Figure 8: different importance attribution methods result for the Dataset1. 

 

Iterative approach 

Since importance attribution methods have inconsistent results, we iterate every 

combination of feature and evaluate its time and accuracy (Table 1). In this final analysis, 

the true importance is highlighted by accuracy results and can be compared with other 

importance attribution methods. This step is the most computationally expensive, with an 

average processing time of 50 seconds for 100 iterations. In an overall analysis, several 

distinct combinations of features (15 of 31) resulted in great accuracy marks (>90%), 

strongly suggesting that our features, in general, correlate well with our targets. The 

results also point that when Z, distOUTFALL and distGLACIER are present, the accuracy 

is around 98% (first four combinations in Table 1). Without any of those features, the 

accuracy drops to less than 96%. The best combination of 3 features is ‘Z, distOUTFALL, 

distGLACIER’; the best combination of 2 is ‘distOUTFALL, distGLACIER’, followed 

by ‘Z, distGLACIER’ and ‘Z, distOUTFALL’; and the best solo feature for prediction is 

‘distGLACIER’, followed by ‘Z’ and ‘distOUTFALL’. Therefore, analyzing the table we 
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can conclude these are the most relevant features for predictions, while BS and SLOPE 

are less important. Comparing with the feature importance methods, we can state that 

only ‘weight’, ‘total_cover’ and SHAP had ranked Z, distOUTFALL and distGLACIER 

above SLOPE and BS; while ‘gain’ and SelectKBest ranked BS as the most important 

feature; and ‘cover’ and ‘total_gain’ ranked BS higher than distGLACIER. That said, we 

can also agree with Scott M. Lundberg and Lee (2017a), which considered SHAP as the 

only consistent method for feature attribution, insofar as SHAP performed really well 

estimating the most important features for model’s decision. Another interesting fact is 

that ‘gain’ is the standard importance type of XGBoost in Python (*6) and did not 

performed well – it defined BS as the most important feature. That said, we can state that 

the inconstancy of importance attribution algorithms is really something to consider, and 

default XGBoost importance type can mislead to wrong interpretations. However, SHAP 

importance is a consistent method that led us to the assertive solution. Relative to the 

variables that control sedimentary settings in King George Bay, we can state that among 

our features the most important ones are distance to the glacier and to the bay’s outfall. 

Those findings confirm what Anderson et al. (1983), Anderson (1999) and Assine & 

Vesely (2008) define as main sedimentation control factors in glaciomarine 

environments. 

 Considering the possible redundancy between Z and distGLACIER highlighted 

by Spearman’s Rank Correlation and PCA analysis, the iterative approach revealed that 

both features describe differently the target. This assumption is because both features are 

necessarily together for the best accuracy scores of Table 1. Those variables, together, 

have an accuracy of 93.116% and are the second-best combination of two features. 

Therefore, all analysis done until now reveal no need to drop any features justified by 

redundancy level. 
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Table 1: accuracy and processing time comparison relative to all feature combinations. 

 

 

SHAP Values   

 SHAP Values was the algorithm chosen to understand how the model makes 

decisions. It is more robust and computationally expensive, taking 5.6 seconds to finish 

the analysis (the same for SHAP importance). The results show the impact of the input 

features on each individual prediction, as shown in the summary plots below (Figures 9, 

10 and 11) (*8). The color bar represents a gradation between low (blue) and high (red) 

values of the normalized feature. The X-axis corresponds to how a feature influences the 

model output, either positively or negatively. 

 In an overall analysis, Z, distGLACIER and distOUTFALL are the most 

important features for the model to decide for any echo-type. Some unique differences 

between echoes and geological relationships are:  
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• In Echo 1, shallower depths (Z) impact positively in the model’s output. 

Moreover, backscatter is a more decisive feature for this echo-type, assuming higher 

values. In fact, this class occurs in shallower areas, where backscatter signal is stronger. 

Echo 1 also occurs closer to the glacier front – most important feature – and further to the 

bay’s outfall. 

 • In Echo 2, Z is the most important feature, with a high impact in the model’s 

output for greater depths. Here, slope is more decisive relative to other echoes, assuming 

low values. This is explained by the occurrence of the echo-type inside the channel’s 

thalwegs (Figure 1). 

• In Echo 3, the class occurrence is closer to the bay’s outfall, which is the most 

decisive feature for the model’s output. 

 

Figure 9: the summary plot of Echo 1. 

 



 

75 

 

Figure 10: the summary plot of Echo 2. 

 

 

Figure 11: the summary plot of Echo 3. 

 

Prediction stage: echo-character map 

 The model was trained using Dataset1 and predicted occurrences of echo-types 

for Dataset2. The result was a coverage layer, in black for Echo 1, blue for Echo 2, and 

Yellow for Echo 3. The validation information was displayed as lines (Figure 12). In a 

red palette, the uncertainty of the predictions was overlaid. A threshold of 95% of 
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certainty was established: less than that, prediction was considered unreliable (marked in 

red). In this sense, it is notable that most of the uncertainty occurs between different echo-

types, which can be interpreted as transitional sedimentary settings and/or incorrect 

human seafloor-classification. The echo-classification from SBP data is done by hand 

and, therefore, bound to human subjectivity for interpreting seismic images and 

classifying them in echo-types. In this context, there is an inherent human difficulty in 

classifying transitionary sedimentological settings in echo-types. 

This final map integrates predicted data, validation data and predicted confidence 

threshold, therefore can be considered relevant auxiliary data for seafloor classification. 

Moreover, inherent SBP limitations would be minimized. 

 

Figure 12: final echo-classification map, showing SBP validation data and uncertainty 

bias. 
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4 CONCLUSIONS 

 In conclusion, we presented a reliable workflow for alternative and auxiliary 

seafloor mapping technique. Regarding our results, four observations can be done: 

 • Explainability methods were used to analyze the data and understand everything 

about. Feature importance attribution approaches are – besides SHAP – inconsistent. 

However, SHAP, ‘weight’ and ‘total_cover’ lead us to a correct importance rank, using 

an iterative method as the ground truth. Moreover, SHAP values provided reliable 

information about how the model makes decisions relative to each predicted class. Using 

this tool, we were able to measure how each geological, geophysical, and morphological 

characteristics impact and define echo-types, even according to visual correlations in 

Figure 1. Although some authors (Anderson et al., 1983; Anderson, 1999; Assine & 

Vesely, 2008) point the variables that control some phenomenon, IA strategies can show 

how variables interact in specific environments, quantifying its importance in the 

definition of the phenomena. In this sense, our research concludes that in the glaciomarine 

environment observed in King George Bay, distance to the glacier front and to the bay’s 

outfall are the most important variables regarding echo-types definition, whereas each 

echo-type had a different setting of control features. 

• Predictions will never substitute real data; however, it can provide relevant 

information when there are lack of data and/or acquisition limitations. 

• There is an inherent limitation of our method, according to the nature of features 

used: backscatter, depth, slope and distances to the glacier and bay’s outfall are relative. 

Backscatter intensity varies from area to area, and it is often associated with seafloor 

hardness, and not sediment type – even though in specific areas you can associate 

hardness to a specific sediment. Thus, the same backscatter intensity range can represent 
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very distinct seafloor compounds in different areas (Ji et al., 2020). Depth, slope and 

distances to the glacier and bay’s outfall are also exceptional relative to each location. 

Since each environment is unique, each area needs specific AI modeling regarding similar 

features. Nonetheless, even though the model developed in our research is specific for the 

King George Bay glaciomarine environment, our approach shows the necessary 

procedure to create similar models in any area, if there is griddable data reliable to be 

correlated. 

• Predicting echo-character maps can be challenging because the validation data 

is human-interpreted by hand. In this sense, the prediction veracity also reflects the ability 

to correct classify echo-types. In addition, most of the prediction uncertainty occurs 

between echo classes, in transitory sedimentary settings since the precise limit between 

different echo-types are the most subjective areas for manual classification. 
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Abstract 

 The interpretation of high-resolution seismic data can be a difficult task. 

Transitional echo characters, anisotropy, data acquisition problems that interferes in 

seismic image, large volume of data, lack of human resources, short deadlines, and 

urgency of preliminary results to support decision making are often a reality that puts 

pressure on the specialist to provide a timely and quality interpretation. Considering this 

scenario, we used artificial intelligence approaches to prove that: (a) correct modeling 

can fulfill gaps in interpretation – when lines are difficult or tricky to interpret and the 

specialist leave them uninterpreted or can not classify it with certainty; and (b) it is 

possible to predict echo-types of seismic lines which were not human-interpreted by hand, 

providing quick and preliminary result to support decision making. Our results showed 

that XGBoost algorithm needed randomly 1% to predict 99% of the dataset with 90% of 

balanced accuracy (BA) (Brodersen et al., 2010), and 4% to predict 96% of the dataset 

with 95% of BA. This demonstrates that the expert could let the algorithm fulfill 
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uninterpreted gaps with confidence, solving the first problem. In addition, we reduce the 

dimensionality of our dataset removing seismic lines entirely, reaching up to 82.7% of 

BA with only 4 out of the 51 lines available, whose corresponds to 10.7% of total dataset 

– as so being able to achieve the second goal (2). 

Keywords: High-resolution seismic; sub-bottom profiler; machine learning. 

 

Introduction 

 The interest in mapping sub-structures of the seabed is present in many kinds of 

marine activities (marine and geological mapping, engineering works, cable and pipeline 

maintenance and installation, offshore windfarms, dredging operations), which require 

detailed information about seafloor composition, topography, and inner sedimentary 

settings. The traditional solution is to collect physical sediment samples. However, for 

large areas, this procedure is expensive and time consuming (Hellequin et al., 2003; Saleh 

and Rabah, 2016). An alternative approach is to use seismic remote sense techniques, 

which can acquire faster and bigger volume of data with smaller relative budget. In this 

context, Sub-Bottom Profilers (SBP) are well designed: usually installed under a ship’s 

hull, it transmits a single-channel high-frequency pulse into the seafloor, revealing 

physical properties of target’s surface and sub-surface. Each pulse (or ping) penetrates up 

to several tens of meters (depending on the kind of sediment), reaching different settings 

of layers. When the pulse reaches a layer, it will reflect and refract, depending on its 

acoustic impedance (𝑍) – the ‘resistance’ that some material imposes on the propagation 

of the wave (Tang et al., 2005; Xinghua and Yongqi, 2004). Considering that, the echo-

signal is registered measuring the elapsed time between the transmission and reception of 
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the acoustic energy when it encounters boundaries of different sediment layers (Müller 

and Wunderlich, 2003; Saleh and Rabah, 2016; Zhao and Liu, 2020). 

 After data acquisition, it is necessary to analyze, interpret and classify seismic 

facies. Since 1950’s the SBP technique is used to study marine geology (Heezen et al., 

1959), but only in 1970’s J. E. Damuth proposed the first classifications of acoustic 

response (Damuth and Hayes, 1977), which are still used as base-line by contemporary 

researchers. Since then, many tested the technique and classification method to 

characterize and map the seafloor, according to Maestro et al. (2018). Moreover, one of 

the most popular ways today to visualize and interpret SBP data is using the Reflection 

Strength attribute, also known as envelope or instantaneous amplitude (𝑎(𝑡)). It is defined 

as 𝑎(𝑡) = |𝑧(𝑡)| = √𝑧𝑟2(𝑡) + 𝑧𝑖
2(𝑡), where 𝑧 is the analitic signal expressed in complex 

plane. This attribute consists of the absolute sum of both polarities, highlighting important 

seismic features by total amplitude (Cunha, 2020; Koson et al., 2014). 

 High-resolution seismic data is, since J. E. Damuth, commonly interpreted by 

hand and, therefore, bound to human subjectivity. In this context, echo-classification of 

seismic facies can usually have considerable variations from specialist to specialist, due 

to transitional echo characters, data acquisition problems and artifacts (non-geological-

topographic features). Another problem is that some lines can be tricky and ambiguous 

to interpret, commonly caused by anisotropy. All these issues together can be, from the 

specialist’s perspective, interpretations with some level of uncertainty. Considering this 

situation, our approach shows the power of ML to predict echo-types, creating the 

possibility of statistical-based auxiliary information that helps echo interpretation.   

 

Methodology 
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 The dataset 

 The dataset used in this article is from Admiralty Bay, South Shetland Islands, 

Antarctica. It is a result of the interpretation of 51 seismic lines, containing the following 

features (Figure 1): 

(1)  X, relative to longitudinal south UTM coordinates from EPSG 32721, datum 

WGS 84, extracted from each seismic trace. 

(2) Y, relative to latitudinal south UTM coordinates from EPSG 32721, datum 

WGS 84, extracted from each seismic trace. 

(3) ECO, relative to the classes from man-made interpretation of seismic echo-

types, named as Echo 1, 2 and 3. 

(4) Z, relative to the depth in meters extracted from a bathymetric DTM. 

(5) BS, relative to the backscatter intensity in decibels of the bathymetric signal. 

(6) SLOPE, relative to the seabed slope, in degrees, of the bathymetric DTM. 

(7) distOUTFALL, relative to the distance in meters between a given grid point 

and the Admiralty Bay’s outfall (delimited by a line connecting the two most 

extreme points of the bay, for each side).  

(8) distGLACIER, relative to the distance in meters between a given grid point 

and the Admiralty Bay’s margin/ glacier front. 

(9) ASPECT, relative to the slope direction in degrees of the bathymetric DTM. 

(10)  Line, relative to the name of the seismic line which a given coordinate 

belongs. 

The (4), (5), (6) and (9) features are relative to the same bathymetric DTM, 

overlaid in the seismic lines. The DTM and the seismic lines were correlated based on the 

nearest neighbor, according to a threshold established as two times the bathymetric grid 

space – in this case, 8 meters. The algorithm used to achieve this was the K-D-Tree, a 
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binary search tree that can support k values for each node (Bentley, 1975). It was the best 

choice considering computational time, when compared to brute force Euclidean distance 

algorithms, whose computational complexity growth is 𝑛2, while K-D-Tree is 𝑛 – 

considering that 𝑛 equals to the input data size. The (7) and (8) features were computed 

using Euclidean distance. 

Figure 1: section of the Admiralty Bay dataset, showing its features and size (69905, 10). 

 

 Data manipulation 

We did two types of data dimensionality reduction: (a) by randomly dropping 

rows in the dataset, affecting all seismic lines equally; and (b) by dropping entire seismic 

lines, selecting the best lines to input in the machine learning model (XGBoost (Chen and 

Guestrin, 2016)). Solution (a) is meant to prove that interpretation gaps can be easily 

solved; and solution (b) proves that the expert do not need to human-interpret by hand all 

seismic lines to offer a quick preliminary result of the entire data classification.  

 Methodology (a) was achieved splitting randomly the data in stratified 

proportional samples (according to Echo 1, 2 and 3). We did 0.1% for training and 99.9% 

for testing; then 0.2% for training and 99.8% for testing; and so on, until 99.9% for 

training and 0.1% for testing Figure 2). 
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Figure 2: relationship between BA gains with dataset size used in training for (a) 

methodology.  

 

 For methodology (b), it was necessary to pick 𝑛 lines and test its BA. All possible 

combinations of 51 seismic lines are: 

∑ 𝐶𝑛,𝑝
𝑛
𝑝=0 = ∑ [𝑛! (𝑝! ∗ (𝑛 − 𝑝)!)⁄ ]𝑛

𝑝=0 = 𝐶51,1 + 𝐶51,2 +⋯+ 𝐶51,51 ≈ 2.25 ∗ 1015. 

For each combination, we test the lines into the model and measure its BA. Since 

fitting and predicting a model 2.25 ∗ 1015 times is impracticable, we chose a different 

approach. At first, we trained and evaluated the model with each line individually, using 

the remaining lines as test data for BA metrics (one for training and 50 for testing). In this 

step, we fit and test 51 times. Then, we picked the best line – which had higher BA 

predicting the others – and selected it. In the next step, we trained the model with two 

lines: the selected one and another random line, in order to get the pair with higher BA. 

So, in this step, we fitted and tested 50 times, measured the highest BA, and selected the 

second-best line. As this strategy goes on, it requires to fit and test ∑ 𝑛51
𝑛=1 = 1275 times 

to define the best n combinations of lines. Clearly, our solution does not show the optimal 

best combinations of n lines. However, it is an easy and efficient way to overcome an 
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expensive computational cost, since fitting and predicting 1275 times is way more viable 

(Figure 3).  

 

Figure 3: Relationship between BA gain with number of seismic lines used to train the 

model (black line). Since each line has a unique size, we plot as blue line the dataset 

percentage relative to the lines used. 

 

Results 

 For the methodology (a) – which goal was to greatly decrease the training size – 

we found that less than 1% of the dataset is necessary to train the model with outcomes 

greater than 90% of BA. For some thresholds, see Table 1. 

Table 1: train and test size, in percentage (%) and absolute values (abs), needed to achieve 

common thresholds. The absolute values are the number of seismic traces needed. 
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For methodology (b) – which goal was to find the best combinations of n lines – 

we found that few lines could predict the remaining data with BA greater than 85% (Table 

2).  

Table 2: the BA and train size (%) achieved for the best combination of n seismic lines.  

 

 

 For each combination of n lines, we decide to visualize them in Admiralty Bay to 

check for any spatial pattern (Figure 4). The results suggested that lines computationally 

selected to train the model try to reflect most anisotropy and variability as possible among 

the area. 

 

Figure 4: seismic lines displayed above bathymetry surface, aiming spatial 

comprehension of methodology (b) results. Black, blue, and yellow lines are, 

respectively, Echo 1, 2 and 3, the seismic classes previously classified. In a, all data 

available; b shows n = 3 lines, which predicted the other 48 with 85.74% of BA; c shows 
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n = 7 lines, which predicted the other 44 with 89.95% of BA; d shows n = 14 lines, which 

predicted the other 37 with 95.31% of BA.  

 

Conclusion 

  Considering the high BA reached in our approach (>90% with <1% stratified 

proportional sample of the dataset in methodology (a); and >85% for using at least 3 out 

of 51 lines to predict the rest in methodology (b)), we conclude that machine learning 

algorithms (as XGBoost) can be used as an auxiliary tool for seafloor interpretation. This 

is said assuming that echo-types are related with other spatial data, all represented as 

overlaid grids.  

We can summarize stating that: 

• Machine learning algorithms can predict missing data. It can predict entire lines 

or small gaps with high BA. 

• It is possible to choose some spatially distributed lines, interpret and input them 

as training in a machine learning algorithm. Then, it can be used to predict the 

other lines, offering a preliminary result of the interpretation. The output 

information is meant to provide a preliminary result and suggest, for the specialist, 

the class distribution among study area. 
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5. Conclusão 

  

A dissertação apresenta uma linha lógica, inicialmente fazendo a revisão da 

aplicação dos métodos geofísicos na Baía Rei George (1º Artigo: A Comparison of 

Different Acoustic Methods for Sedimentary Classification of King George Bay, 

Antarctica) e mostrando a independência das variáveis profundidade, backscatter, 

declividade de fundo, e amplitude sísmica. As metodologias utilizadas para compreender 

o fundo marinho mostraram-se majoritariamente independentes entre si, consoante os 

diferentes princípios de operação e propriedades físicas de cada método (frequência etc.). 

Esse conhecimento favorece a utilização de abordagens de inteligência artificial em geral, 

como aplicação do modelo XGBoost (escolhido nessa dissertação). A performance do 

modelo apresentou acurácias balanceadas superiores a 99%, e serviu como base para os 

subsequentes 2º Artigo: Machine Learning Modeling Applied for Seabed Echo-

Characterization in King George Bay, Antarctica e 3º Artigo: XGBoost as a Tool to 

Improve High Resolution Single Channel Seismic Interpretation. No 2º Artigo, o modelo 

foi utilizado para extrapolação da ecocaracterização de dados dispostos em linhas 

(ecocaracterização sísmica) para superfícies inteiras – coincidindo com a cobertura 

batimétrica da área. O produto gerado forneceu, além do mapa de ecocaráteres, um 

registro de confiabilidade da predição. Notou-se que os trechos de menor confiabilidade 

do mapa correspondem às regiões transicionais entre os distintos ecos. Esse fenômeno é 

justificado pelas incertezas e subjetividades da ecocaracterização feita à mão pelo 

especialista, que frequentemente possui dificuldades em delimitar regiões transicionais 

de domínios sedimentares distintos, traduzidos em eco respostas diferentes. Além disso, 

os domínios das classes para cada baía e entre Datasets1 e 2, pela ótica do modelo 

estatístico, são muito próximos entre si. O 3º Artigo objetivou evidenciar que a alta 
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acurácia balanceada é alcançada não somente retirando dados aleatoriamente do dataset, 

mas sim também retirando linhas sísmicas por completo. Esse resultado mostrou o poder 

das ferramentas de aprendizado para auxiliar o especialista, como: usar predição para 

gerar resultados preliminares acerca da distribuição de classes de ecocaráteres no dado; e 

usar a predição para predizer trechos que haja incerteza da interpretação pelo especialista. 

É entendido que as incertezas são causadas por ecocaráteres transicionais, problemas na 

aquisição do dado, anisotropia, artefatos etc.  

 Em síntese geral, XGBoost mostrou ser uma ferramenta poderosa capaz de 

solucionar problemas reais. A maior contribuição dessa dissertação é a concepção de criar 

superfícies de ecocaráteres de forma simples, integrando um fator de confiabilidade na 

predição. Em uma visão mais ampla, o presente trabalho mostra os passos para a 

construção de superfícies de atributos de distribuição espacial limitada, seja por causa de 

uma limitação de aquisição/logística ou financeira. A segunda maior contribuição é 

evidenciar a habilidade do XGBoost em realizar predições em trechos duvidosos de 

interpretar no dado sísmico. Isso pode ser implementado em softwares de interpretação 

sísmica, com duas vantagens: servir de base a auxiliar o especialista; e realizar a 

interpretação via predição de trechos duvidosos do dado. Dessa forma, seria eximido do 

especialista “chutar” a classificação sísmica onde não há suficiente certeza do próprio, 

dando espaço para uma alternativa de classificação baseada em relações estatísticas. 

 

6. Códigos 

 

 Todos os códigos desenvolvidos nessa dissertação estão disponíveis no endereço 

https://github.com/dceddiaps?tab=repositories. Caso hajam quaisquer questionamentos 

ou problemas de disponibilidade/transparência, contatar diogoceddia@id.uff.br. 

https://github.com/dceddiaps?tab=repositories
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